---恢复内容开始---
今天全是DP
awsl,真的好难
先从斐波那契开始:
dp:满足有一个状态边界条件(f[0]=0,f[1]=1)
边界条件:不需要计算其他状态的值而可以直接得出的状态或者最底层状态(不能由其他状态推出来)
然后是状态转移方程:f[n]=f[n-1]+f[n-2](然后是矩阵加速或者递推。。)
总之:边界条件,状态,转移方程为三大核心(其他都是一些题目变量。)
据说动态规划和dag(大哥)是等价的,但是图论后几天再讲。。QWQ
DP有这几种:(zhx大佬的神仙字体)
这是斐波那契数列顺推:
用别人更新自己。
逆推:
用自己更新别人。
记忆化搜索:
复杂度O(f[n])f[n]为第n项的值
其实他有通项公式的:
也就是说,复杂度为指数级别,因为右边那一项小于1,他的n次方也小于一
为何如此之慢?
因为他有重复调用(f[n]=f[n-1]+f[n-2],f[n-1]=f[n-2]+f[n-3])f[n-2]被调用两次
那么我们再开一个数组,用来判断f[n]是否被算过(suan_le_mei数组)
算过就是1,否则为0(bool)
也就是判断是否被算过(f[n]已经有值了),算过就直接返回,没算过就1.算2.赋值bool3.赋值f[n]
没错就是这样QWQ(%zhx大佬竟然把蒟蒻讲明白了)
在安利一下本人写的斐波那契矩阵加速:https://www.cnblogs.com/lbssxz/p/10679655.html
例题完结
常见dp种类:
其他dp好可怕(最可怕的是未知)
还有两种NOIP涉及概率比较小的:
但是其他4种dp套路要背熟。
1,数位dp:
给定两个正整数l,r,求l到r有多少个数?
(wtf这个题不是r-l+1吗)
但是,zhx让你用数位dp做。
首先将题目转化一下(减去l)得0到x有多少个数这个问题
那么设0<=v<=x,将v按十进制位数分解,得每一位vn,vn-1,vn-2....v1,我们从高位开始填v的位数,要分两种情况:
1,当前面已经填好的位数和x对应位数相同时,现在填的位数必须小于等于x对应位数才满足v<=x
2,当前面有至少一位和x对应位数不相同时,这意味着当前一位不管填多少,都满足v<x,那么,0到9随便填就行,
状态:设数组f[i][j],代表当前填到了第i位,j的值为(0:当前面几位有至少一位不和x对应位相等时,随便填 1:当前面几位都相同时只能填vi<=x[i])
状态转移:从第一位开始,if分两种情况递归
代码:先存x的位数:
其中z为存x位数的数组(下标从0开始)
然后是dp主体部分:
首先必须清空memset()%
初始化:why?因为他们在n+1位的值都为0,所以相等的情况只有一种
然后用一个for循环,枚举从第n位到第0位,然后分情况转移就ok了。QWQ
改一下问题:求l,r区间内有多少个相邻数位只差大于2的数?
状态为了包含所有条件,发生了变化
其他改改就行。
2.树形dp
给你一个有n个结点的树,求它有几个点(没错答案就是n你没看错)
老师竟然把这么简单的题让我们用树形dp做
又变难了
#include<iostream> using namespace std; int f[233]; void dfs(int p) { for (x is p's son) { dfs(x); f[p] += f[x]; } f[p] ++; } int main() { cin >> n; read_tree(); dfs(1); cout << f[1] << endl; return 0; }
状态dp
状压复杂度为
而n<=20时为状压的数据范围,考虑使用状压