• cf 424


    Office Keys

    首先显然有随人位置的递增,钥匙的位置也要递增,这样考虑两张做法:

    1.$f(i,j)$ 表示前i个人,钥匙到第j个最少用的最大时间,然后$O(nK)$ dp

    2.二分时间,对于每一个人选择当前能选择的最左面的钥匙 $O((n+K) logn)$

    #include <bits/stdc++.h>
    
    #define LL long long
    
    const int N = 2010;
    
    using namespace std;
    
    int n,m,pre[N],a[N],b[N];
    
    int Abs(int x)
    {
        if(x<0) return -x;
        return x;
    }
    
    int p;
    
    bool check(int tim)
    {
        int j = 1;
        for(int i=1;i<=n;i++)
        {
            while(j<=m && Abs(a[i]-b[j])+(LL)Abs(b[j]-p) > tim) j++;
            if(j>m) return 0;
            else j++;
        }
        return 1;
    }
    
    int main()
    {
        int maxv = 0;
        scanf("%d%d%d",&n,&m,&p);
        maxv = p;
        for(int i=1;i<=n;i++) scanf("%d",&a[i]), maxv = max(maxv ,a[i]);
        for(int i=1;i<=m;i++) scanf("%d",&b[i]), maxv = max(maxv, b[i]);
        sort(a+1,a+n+1);
        sort(b+1,b+m+1);
        int l=0, r=0;
        for(int i=1;i<=n;i++) l = max(l, Abs(p-a[i]));
        for(int i=1;i<=n;i++) r = max(r, Abs(b[i]-a[i]) + Abs(p-b[i]));
        while(r-l>5)
        {
            int mid = (l+(LL)r)>>1LL;
            if(check(mid)) r = mid;
            else l = mid;
        }
        for(int i=l;i<=r;i++)
            if(check(i))
            {
                cout<<i<<endl;
                break;
            }
        return 0;
    }
    View Code

    Cards Sorting

    方法1:直接用splay模拟。

    方法2:考虑每次删掉当前最小数的代价是上一个最小数和它之间的循环dist,BIT或链表即可。

    (取自CF)

    #include <bits/stdc++.h>
    
    const int N = 100010;
    #define INF 0x3f3f3f3f
    #define LL long long
    
    using namespace std;
    
    struct node
    {
        node *ch[2];
        int v, sum, minv;
        int cmp(int x)
        {
            if(ch[0]->sum + 1 == x) return -1;
            return x > ch[0]->sum;
        }
        node* init(int x);
        void update()
        {
            sum = ch[0]->sum + ch[1]->sum + 1;
            minv = min(v, min(ch[0]->minv, ch[1]->minv));
        }
    }spT[N], Null, *root;
     
    int tot=0;
     
    node* node::init(int x)
    {
        v=x;
        minv=x;
        ch[0]=ch[1]=&Null;
        sum=1;
        return this;
    }
     
    node* build(int src[],int l,int r)
    {
        if(l==r) return spT[++tot].init(src[l]);
        int mid=(l+r)>>1;
        node* tmp=spT[++tot].init(src[mid]);
        if(l<mid) tmp->ch[0]=build(src,l,mid-1);
        if(mid<r) tmp->ch[1]=build(src,mid+1,r);
        tmp->update();
        return tmp;
    }
     
    void rot(node* &o,int x)
    {
        node* tmp=o->ch[x];
        o->ch[x]=tmp->ch[x^1];
        tmp->ch[x^1]=o;
        o->update();
        o=tmp;
        o->update();
    }
     
    void splay(node* &o,int k)
    {
        int t=o->cmp(k);
        if(t==-1) return;
        if(t) k-=o->ch[0]->sum+1;
        int t1=o->ch[t]->cmp(k);
        if(~t1)
        {
            if(t1) k-=o->ch[t]->ch[0]->sum+1;
            splay(o->ch[t]->ch[t1],k);
            if(t1==t) rot(o,t);
            else rot(o->ch[t],t1);
        }
        rot(o,t);
    }
    
    int find_min(node *&o,int minv,int now)
    {
        if(o->ch[0]->minv == minv) return find_min(o->ch[0],minv,now);
        else
        {
            if(o->v == minv) return now+o->ch[0]->sum;
            return find_min(o->ch[1],minv,now+o->ch[0]->sum+1);
        }
    }
    
    int n,a[N];
    
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        Null.minv = INF;
        a[0]=INF;
        a[n+1]=INF;
        root = build(a,0,n+1);
        int len = n+2;
        LL ans = 0;
        for(int i=1;i<=n;i++)
        {
            int tmp = find_min(root,root->minv,0);
            ans += (LL)tmp;
            splay(root,1);
            splay(root->ch[1],tmp+1);
            node* tp = root->ch[1]->ch[0];
            root->ch[1]->ch[0] = &Null;
            root->ch[1]->update();
            root->update();
            
            splay(tp,tp->sum);
            tp = tp->ch[0];
            len--;
            
            splay(root,len-tp->sum);
            splay(root->ch[0],len-tp->sum-1);
            root->ch[0]->ch[1] = tp;
            root->ch[0]->update();
            root->update();
        }
        cout << ans << endl;
        return 0;
    }
    View Code

    Bamboo Partition

    显然要满足的条件等价于

    $sum_{i=1}^n { [frac{a_i + d - 1}{d}] cdot d - a_i} leq K$

    $F(d) = sum_{i=1}^n { [frac{a_i - 1}{d}] + 1} cdot d  leq K + sum {a_i}$

    固定 $sum_{i=1}^n { [frac{a_i - 1}{d}] + 1}$,从而 $F(d)$ 单调。

    对于前者直接找出所有得数相同的 $d$ 的区间,逐一计算即可。

    复杂度$O(n^2 sqrt {a_i} )$

    通过调参可以 $O(n sqrt {a_{max} n})$

    #include <bits/stdc++.h>
    
    #define LL long long
    
    const int N = 110;
    
    using namespace std;
    
    int n,tot,a[N];
    LL K;
    vector<int> v;
    
    int main()
    {
        cin>>n>>K;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            K += (LL)a[i];
            int j=1;
            int tmp = a[i]-1;
            if(tmp>0)
            {
                for(int i=1;i<=tmp;i=j+1)
                    j = tmp/(tmp/i), v.push_back(i);
                v.push_back(tmp+1);
            }
        }
        v.push_back(1);
        sort(v.begin(),v.end());
        v.resize(distance(v.begin(), unique(v.begin(), v.end())));
        LL ans = 1, sum;
        for(int i=0;i<(int)v.size() - 1;i++)
        {
            int l = v[i], r = v[i+1]-1;
            sum = 0;
            for(int j=1;j<=n;j++) sum += (a[j]-1LL)/l + 1LL;
            LL tmp = min(K/sum, (LL)r);
            if(tmp>=l) ans = tmp;
        }
        LL l = v[v.size()-1];
        LL tmp = K/n;
        if(tmp >= l) ans = tmp;
        cout << ans << endl;
    }
    View Code
  • 相关阅读:
    用户控件赋值
    计算一串数字中每个数字出现的次数
    如何理解c和c++的复杂类型声明
    STM32 NVIC学习
    stm32f10x_flash.c中文版
    IBM中国研究院Offer之感言——能力是一种态度
    对于STM32别名区的理解 (转载)
    STM32时钟学习之STM3210X_RCC.H解读
    STM32 DMA
    STM32 内部时钟输出PA.8(MCO)
  • 原文地址:https://www.cnblogs.com/lawyer/p/7172413.html
Copyright © 2020-2023  润新知