• force


    题意

    求解 Ei = Fi/qi

    解法:

    方法一:

    考虑左侧的式子,直接多项式乘法。

    对于右面的式子,我们记做$B_j$,这样有

    $$B_j = sum_{j<i}{ revq_{n-i} f(i-j) }$$

    $$B_j = sum_{0<k<n-j}{ revq_t f(n-j-t) }$$

    $$B_j = (revq otimes f)_{n-j}$$

    五次DFT变形即可。

    在卡精度的情况下可以用实时用三角函数算 $wt$ 代替用 $wn$ 连乘旋转得到 $wt$。

    #include <bits/stdc++.h>
    
    #define PI acos(-1)
    
    const int N = 100010;
    
    using namespace std;
    
    struct EX
    {
        double real,i;
        EX operator+(const EX tmp)const{return (EX){real+tmp.real, i+tmp.i};};
        EX operator-(const EX tmp)const{return (EX){real-tmp.real, i-tmp.i};};
        EX operator*(const EX tmp)const{return (EX){real*tmp.real - i*tmp.i, real*tmp.i + i*tmp.real};};
    };
    
    int R[N<<2];
    
    void DFT(EX a[],int n,int tp_k)
    {
        for(int i=0;i<n;i++) if(i<R[i]) swap(a[i],a[R[i]]);
        for(int d=1;d<n;d<<=1)
        {
            EX wn = (EX){cos(PI/d), sin(PI/d)*tp_k};
            for(int i=0;i<n;i += (d<<1))
            {
                EX wt = (EX){1,0};    //高速度用 
                for(int k=0;k<d;k++, wt = wt*wn)
                {
                //    EX wt = (EX){cos(PI*k / d) ,tp_k*sin(PI*k / d)}; //高精度用(到 10^14 的精度) 
                    EX A0 = a[i+k], A1 = wt * a[i+k+d];
                    a[i+k] = A0+A1;
                    a[i+k+d] = A0-A1;
                }
            }
        }
        if(tp_k==-1)
            for(int i=0;i<n;i++) a[i] = (EX){a[i].real/n, a[i].i/n};
    }
    
    int n,m;
    EX A[N<<2],B[N<<2],C[N<<2];
    double q[N],ans[N];
    
    int main()
    {
        freopen("force.in", "r", stdin);
        freopen("force.out", "w", stdout);
        scanf("%d",&n);
        for(int i=0;i<n;i++) scanf("%lf",&q[i]);
        int L = 0,tot;
        while((1<<L)<n+n-1) L++;
        tot = (1<<L);
        for(int i=1;i<tot;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    
        for(int i=0;i<n;i++) A[i] = (EX){q[i], 0};
        for(int i=1;i<n;i++) B[i] = (EX){1/(double)i/(double)i, 0};
        DFT(A,tot,1);
        DFT(B,tot,1);
        for(int i=0;i<tot;i++) C[i] = A[i]*B[i];
        DFT(C,tot,-1);
        for(int i=0;i<n;i++) ans[i] += C[i].real;
    
        memset(A,0,sizeof(A));
        for(int i=1;i<n;i++) A[i] = (EX){q[n-i], 0};
        DFT(A,tot,1);
        for(int i=0;i<tot;i++) C[i] = A[i]*B[i];
        DFT(C,tot,-1);
        for(int i=0;i<n;i++) ans[i] -= C[n-i].real;
    
        for(int i=0;i<n;i++) printf("%.3lf
    ",ans[i]);
        return 0;
    }
    View Code

    方法二:

    考虑拓展

    $$C_{j+n} = sum_{0 leq k leq j+n} { q_k A_{j+n-k} }$$

    其中

    $A_i = frac{1}{(i-n)^2} (n < i < 2n)$

    $A_i = frac{1}{(n-i)^2} (0 < i < n)$

    从而有 $B_j = C_{j+n}$

    其他全为0,这样一次FFT卷积得到答案

    #include <bits/stdc++.h>
    
    #define PI acos(-1)
    
    const int N = 100010;
    
    using namespace std;
    
    struct EX
    {
        double real,i;
        EX operator+(const EX tmp)const{return (EX){real+tmp.real, i+tmp.i};};
        EX operator-(const EX tmp)const{return (EX){real-tmp.real, i-tmp.i};};
        EX operator*(const EX tmp)const{return (EX){real*tmp.real - i*tmp.i, real*tmp.i + i*tmp.real};};
    };
    
    int R[N<<3];
    
    void DFT(EX a[],int n,int tp_k)
    {
        for(int i=0;i<n;i++) if(i<R[i]) swap(a[i],a[R[i]]);
        for(int d=1;d<n;d<<=1)
        {
            EX wn = (EX){cos(PI/d), sin(PI/d)*tp_k};
            for(int i=0;i<n;i += (d<<1))
            {
                EX wt = (EX){1,0};    //高速度用 
                for(int k=0;k<d;k++, wt = wt*wn)
                {
                //    EX wt = (EX){cos(PI*k / d) ,tp_k*sin(PI*k / d)}; //高精度用(到 10^14 的精度) 
                    EX A0 = a[i+k], A1 = wt * a[i+k+d];
                    a[i+k] = A0+A1;
                    a[i+k+d] = A0-A1;
                }
            }
        }
        if(tp_k==-1)
            for(int i=0;i<n;i++) a[i] = (EX){a[i].real/n, a[i].i/n};
    }
    
    int n,m;
    EX A[N<<3],B[N<<3],C[N<<3];
    double q[N],ans[N];
    
    int main()
    {
        freopen("force.in", "r", stdin);
        freopen("force.out", "w", stdout);
        scanf("%d",&n);
        for(int i=0;i<n;i++) scanf("%lf",&q[i]);
        int L = 0,tot;
        while((1<<L)<4*n-1) L++;
        tot = (1<<L);
        for(int i=1;i<tot;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    
        for(int i=0;i<n;i++) A[i] = (EX){q[i], 0};
        for(int i=1;i<n;i++)
        {
            B[i] = (EX){-1/(double)(n-i)/(double)(n-i), 0};
            B[i+n] = (EX){1/(double)i/(double)i, 0};
        }
        DFT(A,tot,1);
        DFT(B,tot,1);
        for(int i=0;i<tot;i++) C[i] = A[i]*B[i];
        DFT(C,tot,-1);
        for(int i=0;i<n;i++) ans[i] = C[i+n].real;
        for(int i=0;i<n;i++) printf("%.3lf
    ",ans[i]);
        return 0;
    }
    View Code
  • 相关阅读:
    学习进度条第一周
    构建之法阅读笔记01
    软件工程个人作业01
    《构建之法》阅读笔记
    Day6:闭包函数、无参装饰器
    Day5:函数参数
    Day4:字符编码与文件处理
    Day3:数据类型(布尔值、集合)
    Day2:数据类型(列表、元组、字典)
    Day1:初识Python
  • 原文地址:https://www.cnblogs.com/lawyer/p/7162017.html
Copyright © 2020-2023  润新知