https://www.hackerrank.com/contests/illuminati/challenges/tree-covering
这道题先是在上次交流讨论了一下,然后两位百度的朋友先写完代码share出来了,觉得是道很好的题,就做了一下。https://gist.github.com/coder32167/6964331 https://gist.github.com/snakeDling/6965299
基本思想是贪心。根据题意,所选的点必然是叶子节点,那么首先找出树的直径,直径上的这两个点都要。找第三个点的时候,遍历所有的点,找出到直径(上任意一点)距离最小的叶子节点,接着以此类推找第四个点。
贪心可行的依据可直观的这么看,假设AB是树的直径,那么从树中任意一其他叶子X出发寻找最长路,要么是AX,要么是BX。这个是广为证明的一个结论,已经用于寻找直径了。
接下来就是实现,怎么求第三个点,第四个点呢。答案是递归BFS,递归到叶子节点时cover是1,然后往上回溯。对任意父节点,取子节点中cover数最大的加一,剩下的都放入vector中,最后排序。(或者放入堆中也可,就不用最后排序了。)
最后依次把这些branch加回去。过程如下示意图展示:就是先取直径上任意一点,然后根据BFS得到的排序的branch长度,一个一个按顺序将剩余段加入回去。
#include <cstdio> #include <iostream> #include <cmath> #include <algorithm> #include <vector> #include <queue> using namespace std; int get_root(vector<vector<int>> &tree, int root) { int n = tree.size(); vector<bool> visit(n, false); vector<int> len(n); queue<int> que; int max_len = 1; que.push(root); len[root] = 1; while (!que.empty()) { int node = que.front(); que.pop(); if (visit[node]) continue; visit[node] = true; int m = tree[node].size(); if (len[node] > max_len) { root = node; max_len = len[node]; } for (int i = 0; i < m; i++) { que.push(tree[node][i]); len[tree[node][i]] = len[node] + 1; } } return root; } int collect_branch(vector<vector<int>> &tree, int root, vector<int> &branch, vector<bool> &visit) { visit[root] = true; int m = tree[root].size(); vector<int> result; for (int i = 0; i < m; i++) { if (visit[tree[root][i]]) continue; int len = collect_branch(tree, tree[root][i], branch, visit); result.push_back(len); } if (result.size() == 0) return 1; sort(result.begin(), result.end()); int ret = result.back(); result.pop_back(); for (int i = 0; i < result.size(); i++) { branch.push_back(result[i]); } return ret + 1; } int main() { int n; scanf("%d", &n); vector<vector<int>> tree(n+1); for (int i = 1; i < n; i++) { int a, b; scanf("%d", &a); scanf("%d", &b); tree[a].push_back(b); tree[b].push_back(a); } int root = get_root(tree, 1); vector<int> branch; vector<bool> visit(n+1, false); int main_branch = collect_branch(tree, root, branch, visit); branch.push_back(main_branch); sort(branch.begin(), branch.end()); printf("%d ", 1); int total = 0; for (int i = 1; i < n; i++) { if (branch.size() != 0) { total += branch.back(); branch.pop_back(); } printf("%d ", total); } return 0; }