• [code] Transformer For Summarization Source Code Reading [1]


    Basic Information

    作者:李丕绩(腾讯AI Lab)

    模型:Transformer + copy mechanism for abstractive summarization

    数据集:CNN/Daily Mail

    Parameters

    WARNING: IN DEBUGGING MODE
    USE COPY MECHANISM
    USE COVERAGE MECHANISM
    USE AVG NLL as LOSS
    USE LEARNABLE W2V EMBEDDING
    RNN TYPE: transformer
    idx_gpu: 0
    norm_clip: 2  # gradient clipping by norm
    dim_x: 512
    dim_y: 512
    len_x: 401
    len_y: 101
    num_x: 1
    num_y: 1
    hidden_size: 512
    d_ff: 1024
    num_heads: 8  # 8头注意力机制
    dropout: 0.2
    num_layers: 4
    label_smoothing: 0.1
    alpha: 0.9
    beta: 5
    batch_size: 5
    testing_batch_size: 1
    min_len_predict: 35
    max_len_predict: 120
    max_byte_predict: None
    testing_print_size: 500
    lr: 0.15
    beam_size: 4
    max_epoch: 50
    print_time: 20  # 每个 epoch 打印信息,以及保存模型的次数
    save_epoch: 1
    dict_size: 50003  # vocabulary 大小
    pad_token_idx: 0
    loading train set...
    num_files =  13
    num_batches =  3
    

    Model Structure

    Model(
      (tok_embed): Embedding(50003, 512, padding_idx=0)
      (pos_embed): LearnedPositionalEmbedding(
        (weights): Embedding(1024, 512)
      )
      (enc_layers): ModuleList(
        (0): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
        )
        (1): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
        )
        (2): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
        )
        (3): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
        )
      )
      (dec_layers): ModuleList(
        (0): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
          (external_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (external_layer_norm): LayerNorm()
        )
        (1): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
          (external_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (external_layer_norm): LayerNorm()
        )
        (2): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
          (external_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (external_layer_norm): LayerNorm()
        )
        (3): TransformerLayer(
          (self_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (fc1): Linear(in_features=512, out_features=1024, bias=True)
          (fc2): Linear(in_features=1024, out_features=512, bias=True)
          (attn_layer_norm): LayerNorm()
          (ff_layer_norm): LayerNorm()
          (external_attn): MultiheadAttention(
            (out_proj): Linear(in_features=512, out_features=512, bias=True)
          )
          (external_layer_norm): LayerNorm()
        )
      )
      (attn_mask): SelfAttentionMask()
      (emb_layer_norm): LayerNorm()
      (word_prob): WordProbLayer(
        (external_attn): MultiheadAttention(
          (out_proj): Linear(in_features=512, out_features=512, bias=True)
        )
        (proj): Linear(in_features=1536, out_features=50003, bias=True)
      )
      (smoothing): LabelSmoothing()
    )
    
    

    模型结构:

    1. 嵌入表示:token embedding,positional embedding
    2. encoder:3个blocks(8头注意力)
    3. decoder:3个blocks(8头注意力)
    4. mask attention层
    5. layer normalization:层标准化
    6. word probability layer:映射到单词表上的概率分布
    

    Source Code Analysis

    1. prepare_data.py

    处理数据,得到的结果如下:

    拿test set举例,数据集中有11489对 article-summary。数据结构如下:

    所有的数据对组成一级列表,每对数据由两个子列表组成,分别代表article 和 summary

    article列表和summary中,分为两个子列表,第一个是分词后的序列,第二个是分词之前的原始文本

    2. model.py

    利用pytorch框架构建了Transformer summarizer模型:

    2.1. __initial__

    设置模型参数,几个比较重要的:

    使用了copy mechanism 和 coverage mechanism;
    使用NLL作为loss function;
    d_ff size = 1024;
    context size = 512;
    hidden size = 512;
    

    定义了几个比较常用的结构:

    label smoothing
    可学习的token embedding,positional embedding
    word probability layer
    embedding layer normalization 
    

    2.2. structure of encoder & decoder

    DECODER的结构

    ENCODER的结构

    可以看到encoder,decoder中都包含多个(4个)基本modules。每个module的结构如下:

    ENCODER, DECODER中的基本module

    其中包含了子模块,子模块的下级模块如下:self-attention结构,两个全连接层,attention normalization layer,feed forward nomalization layer:

    编解码器基本module中还有下级结构

    self-attention 模块结构如下图:

    self-attention

    2.2.1. embedding(transformer.py)

    token embedding 用的是 nn.Embedding 在训练的时候进行学习。模块化参数:vocabulary size = 50003,embedding dim = 512

    positional embedding 用的还nn.Embedding,随着训练进行学习。模块参数:init_size = 1024(最大的position),embedding dim = 512;参数用正态分布进行随机初始化

    作者同样实现了类 SinusoidalPositionalEmbedding 可以将 learnable positional embedding 变为 fixed,即论文中加入位置信息的方式

    2.2.2. encoder & decoder

    # encoder
    self.enc_layers = nn.ModuleList()
    for i in range(self.num_layers):
        self.enc_layers.append(TransformerLayer(self.dim_x, self.d_ff, self.num_heads, self.dropout))
    
    # decoder 
    self.dec_layers = nn.ModuleList()
    for i in range(self.num_layers):
    	self.dec_layers.append(TransformerLayer(self.dim_x, self.d_ff, self.num_heads, self.dropout, with_external=True))
            
    

    torch可以用nn.ModuleList()来增加模块的层,此处num_layer = 4 ,即加入4层Transformer stack作为encoder。

    定义基本单元的时候TransformerLayer的初始化定义不同。

    2.3. encoding

    流程:

    1. 获得嵌入表示(token embedding + positional embedding)
    2. 层标准化
    3. dropout
    4. padding mask
    5. 对于N层encoder stack进行编码(利用Transformer单元;Transformer单元之间参数不共享),上一层encoder的输出做为下一层encoder的输入(layer的输入是:序列的嵌入表示x,和padding mask)
    6. 返回最终的编码向量x

    2.4. decoding

    decoding 此处分为两种情况:

    1. coverage mechanism + copy mechanism
    2. coverage emchanism

    流程:

    1. 前者需要比后者多传入两个参数:x_ext, max_ext_len;即拓展此表中的词也录入id了,max_ext_len表示OOV词的个数
    2. 获得嵌入表示(token embedding + positional embedding)
    3. 层标准化
    4. dropout
    5. padding mask
    6. 对于N层decoder stack进行编码,上一层decoder的输出做为下一层decoder的输入(layer的输入是:序列的嵌入表示x,和padding mask,self attention mask,external memories,external padding mask)
    7. 利用final decoder state进行word probability distribution的计算。分为两种计算方式,在WordProb中实现

    2.5. word probability projection (WordProbLayer.py)

    进行条件判别:

    1. copy mechanism:

      1. 利用external_attention函数(class MultiheadAttention)计算attention。
      2. 输入的是query = decoder final hidden states;key = value = encoder hidden states,返回的是(attention output, attention weights)
      3. 将解码状态,解码输入(的嵌入表示),external_attention的输出进行concatenation;进行线性映射;经过softmax,得到pred
      4. 如果source article中出现了OOV,max_ext_len>0,则需要将pred拼接上一个全零张量,以至于pred的dim3的维度等于fixed vocabulary size + number of OOV
      5. 设置gate,将解码状态,解码输入(的嵌入表示),external_attention的输出进行concatenation;进行线性映射;经过sigmoid,得到gate
      6. 最终的概率分布:pred = gate * pred + (1-gate) * attention_weights
    2. no copy:利用全连接层进行简单的线性映射,再经过softmax激活函数得到单词表上的概率分布

    函数参数:scatter_add_(dim,  indexTensor,  otherTensor) → 输出Tensor
    函数用法:selfTensor.scatter_add_(dim,  indexTensor,  otherTensor)
    # 该函数将 otherTensor 的所有值加到 selfTensor 中,加入位置由 indexTensor 指明
    
    

    2.6. loss

    2.6.1. label_smoothing_loss (label_smoothing.py)

    def label_smotthing_loss(self, y_pred, y, y_mask, avg=True):
        seq_len, bsz = y.size()
    
        y_pred = T.log(y_pred.clamp(min=1e-8))
        loss = self.smoothing(y_pred.view(seq_len * bsz, -1), y.view(seq_len * bsz, -1))
        if avg:
            return loss / T.sum(y_mask)
        else:
            return loss / bsz
    

    loss function的实现中用到了一个clamp夹逼函数:

    torch.clamp(input, min, max, out=None) → Tensor
    

    作用是将inpout tensor的数值限制在min到max之间,大于max即为max,小于min即为min,在两者之间不变

    然后y_pred(预测的单词对应的概率值)与真实值y送入smoothing函数,作者写了一个类class LabelSmoothing

    初始化类的时候需要传入label_smoothing_factor,即padding位在vocabulary中的索引。利用target计算出model prob;

    返回model prob与y_pred之间的KL divergence作为loss

    2.6.2. negative_log_likelihood

    def nll_loss(self, y_pred, y, y_mask, avg=True):
        cost = -T.log(T.gather(y_pred, 2, y.view(y.size(0), y.size(1), 1)))
        cost = cost.view(y.shape)
        y_mask = y_mask.view(y.shape)
        if avg:
            cost = T.sum(cost * y_mask, 0) / T.sum(y_mask, 0)
            else:
                cost = T.sum(cost * y_mask, 0)
                cost = cost.view((y.size(1), -1))
                return T.mean(cost) 
    

    3. transformer.py

    3.1. class Transformer

    class TransformerLayer(nn.Module):
        
        def __init__(self, embed_dim, ff_embed_dim, num_heads, dropout, with_external=False, weights_dropout = True):
            super(TransformerLayer, self).__init__()
            self.self_attn = MultiheadAttention(embed_dim, num_heads, dropout, weights_dropout)
            self.fc1 = nn.Linear(embed_dim, ff_embed_dim)
            self.fc2 = nn.Linear(ff_embed_dim, embed_dim)
            self.attn_layer_norm = LayerNorm(embed_dim)
            self.ff_layer_norm = LayerNorm(embed_dim)
            self.with_external = with_external
            self.dropout = dropout
            if self.with_external:
                self.external_attn = MultiheadAttention(embed_dim, num_heads, dropout, weights_dropout)
                self.external_layer_norm = LayerNorm(embed_dim)
            self.reset_parameters()
        
        def reset_parameters(self):
            nn.init.normal_(self.fc1.weight, std=0.02)
            nn.init.normal_(self.fc2.weight, std=0.02)
            nn.init.constant_(self.fc1.bias, 0.)
            nn.init.constant_(self.fc2.bias, 0.)
    
        def forward(self, x, kv = None,
                    self_padding_mask = None, self_attn_mask = None,
                    external_memories = None, external_padding_mask=None,
                    need_weights = False):
            # x: seq_len x bsz x embed_dim
            residual = x  # 残差:add & norm操作中,需要先将residual,以及residual经过feed forward得到的output进行求和,再进行norm的计算
            if kv is None:
                x, self_attn = self.self_attn(query=x, key=x, value=x, key_padding_mask=self_padding_mask, attn_mask=self_attn_mask, need_weights = need_weights)
            else:
                x, self_attn = self.self_attn(query=x, key=kv, value=kv, key_padding_mask=self_padding_mask, attn_mask=self_attn_mask, need_weights = need_weights)
    
            x = F.dropout(x, p=self.dropout, training=self.training)
            x = self.attn_layer_norm(residual + x)  # 先将residual,以及residual经过feed forward得到的output进行求和,再进行norm的计算
    
            if self.with_external:
                residual = x
                x, external_attn = self.external_attn(query=x, key=external_memories, value=external_memories, key_padding_mask=external_padding_mask, need_weights = need_weights)
                x = F.dropout(x, p=self.dropout, training=self.training)
                x = self.external_layer_norm(residual + x)
            else:
                external_attn = None
    
            residual = x
            x = gelu(self.fc1(x))  # 高斯误差线性单元 Gaussian Error Linear Units(GELU)
            x = F.dropout(x, p=self.dropout, training=self.training)
            x = self.fc2(x)  # 全连接层
            x = F.dropout(x, p=self.dropout, training=self.training)
            x = self.ff_layer_norm(residual + x)
    
            return x, self_attn, external_attn
    

    基本结构:

    1. self attention层(class MultiheadAttention):初始化Transformer单元的时候,需要指定number of head

    2. external attention层(class MultiheadAttention):如果参数with_external为True,计算attention的时候需要考虑外界的输入。即不再是query = key = value了,而key 和 value可能来自source端,这在decoder中需要用到。

    3. 全连接层(两个),形状:(embed_dim, ff_embed_dim),(ff_embed_dim, embed_dim)

    4. attention layer normalization + feedforward normalization(class LayerNorm

    5. dropout

    6. parameter initialization:主要针对的是两个全连接层的weights和bias

    功能(forward函数):

    1. 记录下residual。在add & norm操作中,需要先将经过计算得到的output与residual进行求和,再进行normalization
    2. self_attention,用的是class MultiheadAttention,需要提供给forward函数:query,key,value;以及key_padding_mask,atten_mask
    3. dropout
    4. add & attention normalization
    5. 如果参数with_external为True,需要额外进行:
      1. external attention
      2. dropout
      3. add & attention normalization
    6. 再记录residual
    7. 经过全连接层f1
    8. 高斯误差线性单元 Gaussian Error Linear Units(GELU)
    9. dropout
    10. 经过全连接层f2
    11. dropout
    12. add & feedforward normalization

    其中激活函数GLUE的定义如下:

    def gelu(x):
        cdf = 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
        return cdf*x
    

    3.2. class MultiheadAttention

    初始化MultiheadAttention需要几个参数:

    1. attention head count:8
    2. embed_dim (dim_x) : 512
    3. ff_embed_dim:1024

    head_dim,即每个注意力头的维度的计算方式为:head_dim = embed_dim // num_heads,前者必须可以为后者所整除

    attention 用的还是论文中scaled attention,scaling参数是head_dim开方

    对收入、输出的映射:

    1. in_proj_weight:(3*embed_dim, embed_dim)

    2. in_proj_bia:(3*embed_dim),先定义出来,前1/3是Query的,中间1/3是Key的,最后1/3是Value的。后面定义了一个函数_in_proj,根据传入的参数确定需要对qkv中的那几个进行映射,取出来就行了。但是输入映射的参数肯定是从in_proj_weight,in_proj_bia中取的

    3. out_proj:(embed_dim, embed_dim)

    对具体情况进行判别,对应地对输入的qkv进行输入映射:

    1. 如果qkv相同,则是self-attention
    2. 如果qkv不同,但是kv相同,则是encoder-decoder attention
    3. 如果qkv均不同,则是一般的attention

    对attention weights进行mask,使用的是方法masked_fill_ 输入一个ByteTensor,其中元素为1的位置,对应Tensor中元素会被置0。

    对attention weights进行mask,再进行softmax,再进行dropout

    attention output是attention weights与value进行bmm (batch matrix multiply),结果再包上一层dropout

    进行一次输出映射,得到MultiheadAttention的输出

    3.3. class LayerNorm

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        return self.weight * x + self.bias
    

    流程:

    1. 计算均值

    2. 计算方差

    3. 减去方差,除以标准差

    4. 经过一个线性映射(fully connected layer)

    3.4. Positional Embedding

    定义了两个类:

    1. 可学习的位置编码:class LearnedPositionalEmbedding
    2. 由正弦函数给出的固定位置编码:class SinusoidalPositionalEmbedding定义与Attention is All You Need 论文中一致
  • 相关阅读:
    亲和数
    改革春风吹满地
    处理选中图片
    项目架构(结构)搭建:主流结构(UITabBarController + 导航控制器)
    iOS应用启动main函数
    LaunchScreen&LaunchImage
    颜色常识
    折半查找法(二分法)
    冒泡排序
    多用户登录
  • 原文地址:https://www.cnblogs.com/lauspectrum/p/11229125.html
Copyright © 2020-2023  润新知