• 【55】目标检测之IOU交并比


    交并比(Intersection over union)

    你如何判断对象检测算法运作良好呢?在本笔记中,你将了解到并交比函数,可以用来评价对象检测算法。在下一个笔记中,我们用它来插入一个分量来进一步改善检测算法,我们开始吧。

    在对象检测任务中,你希望能够同时定位对象,所以如果实际边界框是这样的,你的算法给出这个紫色的边界框,那么这个结果是好还是坏?

    所以交并比(loU)函数做的是计算两个边界框交集和并集之比。两个边界框的并集是这个区域,就是属于包含两个边界框区域(绿色阴影表示区域),而交集就是这个比较小的区域(橙色阴影表示区域),那么交并比就是交集的大小,这个橙色阴影面积,然后除以绿色阴影的并集面积。

    参考:

    交并比:IOU=(A∩B)/(A∪B)

    一般约定,在计算机检测任务中,如果loU≥0.5,就说检测正确,如果预测器和实际边界框完美重叠,loU就是1,因为交集就等于并集。但一般来说只要loU≥0.5,那么结果是可以接受的,看起来还可以。一般约定,0.5是阈值,用来判断预测的边界框是否正确。一般是这么约定,但如果你希望更严格一点,你可以将loU定得更高,比如说大于0.6或者更大的数字,但loU越高,边界框越精确。

    所以这是衡量定位精确度的一种方式,你只需要统计算法正确检测和定位对象的次数,你就可以用这样的定义判断对象定位是否准确。再次,0.5是人为约定,没有特别深的理论依据,如果你想更严格一点,可以把阈值定为0.6。有时我看到更严格的标准,比如0.6甚至0.7,但很少见到有人将阈值降到0.5以下。

    人们定义loU这个概念是为了评价你的对象定位算法是否精准,但更一般地说,loU衡量了两个边界框重叠地相对大小。如果你有两个边界框,你可以计算交集,计算并集,然后求两个数值的比值,所以这也可以判断两个边界框是否相似,我们将在下一个视频中再次用到这个函数,当我们讨论非最大值抑制时再次用到。

    请听恩达老师讲的笑话:

    好,这就是loU,或者说交并比,不要和借据中提到的我欠你钱的这个概念所混淆,如果你借钱给别人,他们会写给你一个借据,说:“我欠你这么多钱(I own you this much money)。”,这也叫做loU。这是完全不同的概念,这两个概念重名。

    现在介绍了loU交并比的定义之后,在下一个笔记中,我想讨论非最大值抑制,这个工具可以让YOLO算法输出效果更好,我们下一个笔记继续。

  • 相关阅读:
    性能测试篇 :Jmeter HTTP代理服务器录制压力脚本
    使用JMeter录制手机App脚本
    WEB接口测试之Jmeter接口测试自动化 (二)(数据分离)
    【Python】Python读取文件报错:UnicodeDecodeError: 'gbk' codec can't decode byte 0x99 in position 20: illegal multibyte sequence
    【Python】学习笔记九:面向对象拓展
    【Python】学习笔记七:函数
    【Python】学习笔记五:缩进与选择
    【Python】学习笔记三:序列
    【Python】学习笔记二:基本数据类型
    【Python】学习笔记一:Hello world
  • 原文地址:https://www.cnblogs.com/lau1997/p/12374595.html
Copyright © 2020-2023  润新知