• 求解朋友关系中的朋友圈数量


    问题描述:给出10w条人和人之间的朋友关系,求出这些朋友关系中有多少个朋友圈

    样例A-B、B-C、D-E、E-F ,这四对关系中存在2个朋友圈

    解题思路:并查集,而题目只需要求出朋友圈数量,并不需要求出各朋友圈,所以该并查集的实现也可以非常简单。

    A-B,就把father[B] = A,处理每条朋友关系即可得到结果。

    而关于并查集的介绍,已有很多博文有所阐述,这里就不啰嗦了。

    如下给出实现的并查集

    Python实现

    class WeightedUF():  
        fatherid=[]  
        sz=[]  
        count=0  
        def __init__(self,n):  
            self.count=n  
            self.fatherid=[i for i in range(n)]  
            self.sz=[0 for i in range(n)]  
        def getcount(self):  
            return self.count  
        def connected(self,p,q):  
            return self.find(p)==self.find(q)  
        def find(self,p):  
            while p !=self.fatherid[p]:  
                p=self.fatherid[p]  
            return p  
        def pathcompressionfind(self,p):  
            if p==self.fatherid[p]:  
                return p  
            else:  
                self.fatherid[p]=self.pathcompressionfind(self.fatherid[p])  
                return self.fatherid[p]  
        def union(self,p,q):  
            i=self.find(p)  
            j=self.find(q)  
            if i==j:  
                return   
            if self.sz[i]<self.sz[j]:  
                self.fatherid[i]=j  
                self.sz[j]+=self.sz[i]  
            else:  
                self.fatherid[j]=i  
                self.sz[i]+=self.sz[j]  
            self.count-=1  

    Java实现

    public class WeightUF {
        int[] fatherid ;
        int[] sz;
        int count = 0;
        public WeightUF(int n){
            this.count = n;
            this.fatherid = new int[n];
            this.sz = new int[n];
            for(int i=0;i<n;i++){
                fatherid[i] = i;
                sz[i] = 0;
            }
        }
        public int getCount(){
            return count;
        }
        public boolean connected(int p,int q){
            return find(p) == find(q);
        }
        public int find(int p){
            while (p != fatherid[p]){
                p = fatherid[p];
            }
            return p;
        }
        public int pathcompressionfind(int p){
            if(p == fatherid[p]){
                return p;
            }
            else{
                fatherid[p] = pathcompressionfind(p);
                return fatherid[p];
            }
        }
        public void union(int p,int q){
            int i = find(p);
            int j = find(q);
            if(i == j){
                return;
            }
            if(sz[i] < sz[j]){
                fatherid[i] = j;
                sz[j] += sz[i];
            }
            else{
                fatherid[j] = i;
                sz[i] += sz[j];
            }
            count -= 1;
        }
    }

    测试样例(java)

    public static void main(String[] args) {
            WeightUF weightUF = new WeightUF(10);
            weightUF.union(9,2);
            weightUF.union(9,3);
            weightUF.union(1,2);
            weightUF.union(5,4);
            System.out.println(weightUF.getCount());
            System.out.println(weightUF.connected(9,4));
            System.out.println(weightUF.connected(9,5));
        }
  • 相关阅读:
    multimap-begin
    multimap-constructors
    multimap-constructors
    map-rend
    map-rend
    map-rbegin
    map-rbegin
    lower_bound
    纪念邓小平同志诞辰110周年,2014年出品的48集电视剧《历史转折中的邓小平》
    二叉查找树(二叉排序树)的详细实现,以及随机平衡二叉查找树Treap的分析与应用
  • 原文地址:https://www.cnblogs.com/lateink/p/6437439.html
Copyright © 2020-2023  润新知