• [leetcode] Count of Smaller Numbers After Self


    题目:

    You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].
    
    Example:
    
    Given nums = [5, 2, 6, 1]
    
    To the right of 5 there are 2 smaller elements (2 and 1).
    To the right of 2 there is only 1 smaller element (1).
    To the right of 6 there is 1 smaller element (1).
    To the right of 1 there is 0 smaller element.
    Return the array [2, 1, 1, 0].

    分析:很显然不能用时间复杂度为O(N2)的暴力穷举法,下面先给出一个运行时间为102ms的AC答案:

    public class Solution {
        private void add(int[] bit, int i, int val) {
            for (; i < bit.length; i += 1) bit[i] += val;
        }
    
        private int query(int[] bit, int i) {
            return bit[i];
        }
    
        public List<Integer> countSmaller(int[] nums) {
            int[] tmp = nums.clone();
            Arrays.sort(tmp);
            for (int i = 0; i < nums.length; i++) {
                nums[i] = Arrays.binarySearch(tmp, nums[i]);
            }
            int[] bit = new int[nums.length];
            Integer[] ans = new Integer[nums.length];
            for (int i = nums.length - 1; i >= 0; i--) {
                ans[i] = query(bit, nums[i]);
                add(bit, nums[i]+1, 1);
            }
            return Arrays.asList(ans);
        }
    }

    上面的答案虽然AC了,但若原始海量数据本身是降序排列时,再运行时间也为O(N2),下面给出运用树状数组(Binary Indexed Tree (Fenwick tree))的解法,使时间复杂度将为O(NlgN),树状数组的相关知识可参考博客树状数组.

        private int lowbit(int x) {
            return x&(-x);
        }
        
        private void add(int[] bit, int i, int val) {
            for (; i < bit.length; i += lowbit(i)) bit[i] += val;
        }
    
        private int query(int[] bit, int i) {
            int ans = 0;
            for (; i > 0; i -= lowbit(i)) ans += bit[i];
            return ans;
        }
    
        public List<Integer> countSmaller(int[] nums) {
            int[] tmp = nums.clone();
            Arrays.sort(tmp);
            for (int i = 0; i < nums.length; i++) nums[i] = Arrays.binarySearch(tmp, nums[i]);
            int[] bit = new int[nums.length];
            Integer[] ans = new Integer[nums.length];
            for (int i = nums.length - 1; i >= 0; i--) {
                ans[i] = query(bit, nums[i]);
                add(bit, nums[i]+1, 1);
            }
            return Arrays.asList(ans);
        }

    最后给出线段树(segment tree)的解法,时间复杂度也为O(NlgN),相似题目请参考Range Sum Query - Mutable,代码如下:

    class SegmentTreeNode {
        int start, end;
        int num;
        SegmentTreeNode ltree, rtree;
        public SegmentTreeNode(int s, int e) {
            start = s;
            end = e;
        }
    }
    
    public class Solution { 
        SegmentTreeNode root = null;
        
        public SegmentTreeNode buildTree(int[] nums, int left, int right) {
            SegmentTreeNode root = new SegmentTreeNode(left, right);
            if (left != right) {
                int mid = left + (right - left)/2;
                root.ltree = buildTree(nums, left, mid);
                root.rtree = buildTree(nums, mid+1, right);
            }
            return root;
        }
        
        private void update(SegmentTreeNode root, int i, int val) {
            if (root.start == root.end) {
                root.num += 1;
            } else {
                int mid = root.start + (root.end - root.start)/2;
                if (i <= mid) {
                    update(root.ltree, i, val);
                } else {
                    update(root.rtree, i, val);
                }
                root.num = root.ltree.num + root.rtree.num;
            }
        }
    
        private int query(SegmentTreeNode root, int i, int j) {
            if (root.start == i && root.end == j) {
                return root.num;
            } else {
                int mid = root.start + (root.end - root.start)/2;
                if (j <= mid) {
                    return query(root.ltree, i, j);
                } else if (i > mid) {
                    return query(root.rtree, i, j);
                } else {
                    return query(root.ltree, i, root.ltree.end) + query(root.rtree, root.rtree.start, j);
                }
            }
        }
    
        public List<Integer> countSmaller(int[] nums) {
            int[] tmp = nums.clone();
            Arrays.sort(tmp);
            for (int i = 0; i < nums.length; i++) {
                nums[i] = Arrays.binarySearch(tmp, nums[i]) + 1;
            }
            int[] bit = new int[nums.length + 1];
            root = buildTree(bit, 0, bit.length-1);
            Integer[] ans = new Integer[nums.length];
            for (int i = nums.length - 1; i >= 0; i--) {
                ans[i] = query(root, 0, nums[i] - 1);
                update(root, nums[i], 1);
            }
            return Arrays.asList(ans);
        }
    }
  • 相关阅读:
    Powerdesigner中如何生成测试数据
    iBatis #和$的区别 把int作为参数时,转换为字符型
    config或者xml中的embedded使用方法。
    C#中发送邮件
    ASP.NET中JSON的序列化和反序列化
    AspNetPager.dll 实现分页
    oracle创建表空间
    如何进行数据库,比如ORACLE,SQL SERVER的逆向工程,将数据库导入到PD中
    DataTable转换成JSON字符串的函数
    iBatis把一个表的sqlmap配置的多个xml中。
  • 原文地址:https://www.cnblogs.com/lasclocker/p/5024420.html
Copyright © 2020-2023  润新知