• 一、Solr的相关概念了解


    1.1. 什么是Solr

    Solr Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展,并对索引、搜索性能进行了优化。

    Solr可以独立运行,运行在JettyTomcat等这些Servlet容器中,Solr 索引的实现方法很简单,用 POST 方法向 Solr 服务器发送一个描述 Field 及其内容的 XML 文档,Solr根据xml文档添加、删除、更新索引 。Solr 搜索只需要发送 HTTP GET 请求,然后对 Solr 返回Xmljson等格式的查询结果进行解析,组织页面布局。Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。

    1.2. 下载

    Solr官方网站(http://lucene.apache.org/solr/ )下载Solr4.10.3,根据Solr的运行环境,Linux下需要下载lucene-4.10.3.tgzwindows下需要下载lucene-4.10.3.zip

    Solr使用指南可参考:https://wiki.apache.org/solr/FrontPage。

    下载lucene-4.10.3.zip并解压:

    binsolr的运行脚本

    contribsolr的一些贡献软件/插件,用于增强solr的功能。

    dist:该目录包含build过程中产生的warjar文件,以及相关的依赖文件。

    docssolrAPI文档

    examplesolr工程的例子目录:

    l example/solr:

    该目录是一个包含了默认配置信息的SolrCore目录。

    l example/multicore

    该目录包含了在Solrmulticore中设置的多个Core目录。

    l example/webapps:

        该目录中包括一个solr.war,该war可作为solr的运行实例工程。

    licensessolr相关的一些许可信息

    1.3. 什么是SolrCloud

    SolrCloud(solr )Solr提供的分布式搜索方案,当你需要大规模,容错,分布式索引和检索能力时使用 SolrCloud。当一个系统的索引数据量少的时候是不需要使用SolrCloud的,当索引量很大,搜索请求并发很高,这时需要使用SolrCloud来满足这些需求。

    SolrCloud是基于SolrZookeeper的分布式搜索方案,它的主要思想是使用Zookeeper作为集群的配置信息中心。

    它有几个特色功能:

    1)集中式的配置信息

    2)自动容错

    3)近实时搜索

    4)查询时自动负载均衡

    1.3.1. zookeeper是个什么玩意?

    顾名思义zookeeper就是动物园管理员,他是用来管hadoop(大象)、Hive(蜜蜂)pig(小猪)的管理员, Apache HbaseApache Solr 的分布式集群都用到了zookeeperZookeeper:是一个分布式的、开源的程序协调服务,是hadoop项目下的一个子项目

    1.3.2. Zookeeper可以干哪些事情

    1配置管理

    在我们的应用中除了代码外,还有一些就是各种配置。比如数据库连接等。一般我们都是使用配置文件的方式,在代码中引入这些配置文件。但是当我们只有一种配置,只有一台服务器,并且不经常修改的时候,使用配置文件是一个很好的做法,但是如果我们配置非常多,有很多服务器都需要这个配置,而且还可能是动态的话使用配置文件就不是个好主意了。这个时候往往需要寻找一种集中管理配置的方法,我们在这个集中的地方修改了配置,所有对这个配置感兴趣的都可以获得变更。比如我们可以把配置放在数据库里,然后所有需要配置的服务都去这个数据库读取配置。但是,因为很多服务的正常运行都非常依赖这个配置,所以需要这个集中提供配置服务的服务具备很高的可靠性。一般我们可以用一个集群来提供这个配置服务,但是用集群提升可靠性,那如何保证配置在集群中的一致性呢? 这个时候就需要使用一种实现了一致性协议的服务了。Zookeeper就是这种服务,它使用Zab这种一致性协议来提供一致性。现在有很多开源项目使用Zookeeper来维护配置,比如在HBase中,客户端就是连接一个Zookeeper,获得必要的HBase集群的配置信息,然后才可以进一步操作。还有在开源的消息队列Kafka中,也使用Zookeeper来维护broker的信息。在Alibaba开源的SOA框架Dubbo中也广泛的使用Zookeeper管理一些配置来实现服务治理。

    2、名字服务

    名字服务这个就很好理解了。比如为了通过网络访问一个系统,我们得知道对方的IP地址,但是IP地址对人非常不友好,这个时候我们就需要使用域名来访问。但是计算机是不能是别域名的。怎么办呢?如果我们每台机器里都备有一份域名到IP地址的映射,这个倒是能解决一部分问题,但是如果域名对应的IP发生变化了又该怎么办呢?于是我们有了DNS这个东西。我们只需要访问一个大家熟知的(known)的点,它就会告诉你这个域名对应的IP是什么。在我们的应用中也会存在很多这类问题,特别是在我们的服务特别多的时候,如果我们在本地保存服务的地址的时候将非常不方便,但是如果我们只需要访问一个大家都熟知的访问点,这里提供统一的入口,那么维护起来将方便得多了。

    3、分布式锁

    其实在第一篇文章中已经介绍了Zookeeper是一个分布式协调服务。这样我们就可以利用Zookeeper来协调多个分布式进程之间的活动。比如在一个分布式环境中,为了提高可靠性,我们的集群的每台服务器上都部署着同样的服务。但是,一件事情如果集群中的每个服务器都进行的话,那相互之间就要协调,编程起来将非常复杂。而如果我们只让一个服务进行操作,那又存在单点。通常还有一种做法就是使用分布式锁,在某个时刻只让一个服务去干活,当这台服务出问题的时候锁释放,立即fail over到另外的服务。这在很多分布式系统中都是这么做,这种设计有一个更好听的名字叫Leader Election(leader选举)。比如HBaseMaster就是采用这种机制。但要注意的是分布式锁跟同一个进程的锁还是有区别的,所以使用的时候要比同一个进程里的锁更谨慎的使用。

    4、集群管理 

    在分布式的集群中,经常会由于各种原因,比如硬件故障,软件故障,网络问题,有些节点会进进出出。有新的节点加入进来,也有老的节点退出集群。这个时候,集群中其他机器需要感知到这种变化,然后根据这种变化做出对应的决策。比如我们是一个分布式存储系统,有一个中央控制节点负责存储的分配,当有新的存储进来的时候我们要根据现在集群目前的状态来分配存储节点。这个时候我们就需要动态感知到集群目前的状态。还有,比如一个分布式的SOA架构中,服务是一个集群提供的,当消费者访问某个服务时,就需要采用某种机制发现现在有哪些节点可以提供该服务(这也称之为服务发现,比如Alibaba开源的SOA框架Dubbo就采用了Zookeeper作为服务发现的底层机制)。还有开源的Kafka队列就采用了Zookeeper作为Cosnumer的上下线管理。

    1.4. SolrCloud结构

    SolrCloud为了降低单机的处理压力,需要由多台服务器共同来完成索引和搜索任务。实现的思路是将索引数据进行Shard(分片)拆分,每个分片由多台的服务器共同完成,当一个索引或搜索请求过来时会分别从不同的Shard的服务器中操作索引。

    SolrCloud需要Solr基于Zookeeper部署,Zookeeper是一个集群管理软件,由于SolrCloud需要由多台服务器组成,由zookeeper来进行协调管理。

    下图是一个SolrCloud应用的例子:

    对上图进行图解,如下:

    1.4.1. 物理结构

    三个Solr实例( 每个实例包括两个Core),组成一个SolrCloud

    1.4.2. 逻辑结构

    索引集合包括两个Shardshard1shard2),shard1shard2分别由三个Core组成,其中一个Leader两个ReplicationLeader是由zookeeper选举产生,zookeeper控制每个shard上三个Core的索引数据一致,解决高可用问题。

    用户发起索引请求分别从shard1shard2上获取,解决高并发问题。

    1.4.3. collection

    CollectionSolrCloud集群中是一个逻辑意义上的完整的索引结构。它常常被划分为一个或多个Shard(分片),它们使用相同的配置信息。

    比如:针对商品信息搜索可以创建一个collection

     collection=shard1+shard2+....+shardX

    1.4.4. Core

    每个CoreSolr中一个独立运行单位,提供 索引和搜索服务。一个shard需要由一个Core或多个Core组成。由于collection由多个shard组成所以collection一般由多个core组成。

    1.4.5. MasterSlave

    Mastermaster-slave结构中的主结点(通常说主服务器),Slavemaster-slave结构中的从结点(通常说从服务器或备服务器)。同一个Shardmasterslave存储的数据是一致的,这是为了达到高可用目的。

    1.4.6. Shard

    Collection的逻辑分片。每个Shard被化成一个或者多个replication,通过选举确定哪个是Leader

  • 相关阅读:
    @getMapping与@postMapping
    springcloud--入门
    Linux(centos6.5)mysql安装
    基于用户Spark ALS推荐系统(转)
    hadoop MapReduce在Linux上运行的一些命令
    Navicat连接阿里云轻量级应用服务器mysql
    HDFS操作笔记
    线程池的5种创建方式
    分布式共享锁的程序逻辑流程
    推荐系统常用数据集
  • 原文地址:https://www.cnblogs.com/laoyeye/p/6759411.html
Copyright © 2020-2023  润新知