• 1、如何在列表,字典,集合种根据条件筛选数据?2、如何为元组中的每个元素命名,提高程序的可读性3、如何统计出序列中元素出现的频度4、如何根据字典中value的大小,对字典的key进行排序


    一、数据筛选:

     处理方式:

    1、filter函数在py3,返回的是个生成式。

    from random import randint
    
    data = [randint(-100,100) for i in range(10)]
    data2 = [34, -59, -13, 96, -78, 38, 89, -96, -79, 98]
    
    info = filter(lambda x:x>0,data2)
    for i in info:
        print(i)

    2、列表解析

    from random import randint
    
    data = [randint(-100,100) for i in range(10)]
    data2 = [34, -59, -13, 96, -78, 38, 89, -96, -79, 98]
    
    info = [i for i in data2 if i >0]
    print(info)

    filter与列表解析的比较:

    在py2使用列表生成式效率高,在py3使用filter过滤器会效率高

    from random import randint
    import timeit
    import pprint
    data = [randint(-100,100) for i in range(10)]
    data2 = [34, -59, -13, 96, -78, 38, 89, -96, -79, 98]
    
    t1 = timeit.Timer('[i for i in [34, -59, -13, 96, -78, 38, 89, -96, -79, 98] if i >0]')
    t2 = timeit.Timer('filter(lambda x:x>0,[34, -59, -13, 96, -78, 38, 89, -96, -79, 98])')
    # t2 =
    print(t1.timeit())
    print(t2.timeit())
    
    
    结果:
    1.9095332647026366
    0.6967581773661176

    3、字典解析:

    使用字典生成式来筛选数据

    from random import randint
    info = {x:randint(10,100) for x in range(1,11)}
    print(info)
    info2 = {key:value for key,value in info.items() if value >60}

     4、集合数据筛选:

    结构看起来和字典生成式差不多

    data = [34, -59, -13, 96, -78, 38, 89, -96, -79, 98]
    data2 = set(data)
    print(data2)
    info = {x for x in data2 if x>0}
    print(info)

     二、如何为元组中的每个元素命名,提高程序的可读性

     1、给index指定数值常量,类似C里的枚举

    
    
    name,work,play,address = range(4)
    people = ("Tom",35,"Teacher","swimming","shenzhen") print(people[name],people[work],people[address])

    2、使用标准库中collections.namedtuple替代内置tuple,自定义一个tuple子类,这种方式开销仅仅比普通元组高一些。

    from collections import namedtuple
    people2 = namedtuple('people2',(['name','age','work','play','address']))
    info = people2("Tom",35,"Teacher","swimming","shenzhen")
    print(info)
    print(info.name,info.age,info.work,info.play,info.address)
    
    结果:
    people2(name='Tom', age=35, work='Teacher', play='swimming', address='shenzhen')
    Tom 35 Teacher swimming shenzhen

    3、如何统计出序列中元素出现的频度

    1、使用fromkey方法初始化一个dict,然后通过for循环迭代统计次数。

    # from random import randint
    #
    # data = [randint(0,10) for x in range(30)]
    # print(data)
    data2 = [3, 0, 9, 1, 4, 1, 5, 7, 4, 7, 7, 3, 10, 4, 0, 6, 9, 2, 2, 4, 1, 1, 7, 8, 2, 7, 3, 1, 4, 9]
    dict1 = dict.fromkeys(data2,0)
    print(dict1)
    for x in data2:
        dict1[x] += 1
    
    print(dict1)

    结果:

    {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 0, 8: 0, 9: 0, 10: 0}
    {0: 2, 1: 5, 2: 3, 3: 3, 4: 5, 5: 1, 6: 1, 7: 5, 8: 1, 9: 3, 10: 1}

    2、使用collections.Counter对象

    # from random import randint
    #
    # data = [randint(0,10) for x in range(30)]
    # print(data)
    data2 = [3, 0, 9, 1, 4, 1, 5, 7, 4, 7, 7, 3, 10, 4, 0, 6, 9, 2, 2, 4, 1, 1, 7, 8, 2, 7, 3, 1, 4, 9]
    from collections import Counter
    dict1 = Counter(data2)
    print(dict1)
    print(dict1[1],dict1[4],dict1[7])
    print(dict1.most_common(3))

    结果:

    Counter({1: 5, 4: 5, 7: 5, 2: 3, 3: 3, 9: 3, 0: 2, 5: 1, 6: 1, 8: 1, 10: 1})
    5 5 5
    [(1, 5), (4, 5), (7, 5)]

    4、如何根据字典中value的大小,对字典的key进行排序

     

    对于这种排序,一般选择用内置函数sorted,因为这些内置函数一般使用C编写,运算速度会快些

    1、使用zip函数

    from random import randint
    dict1 = {x:randint(50,100) for x in 'abcdefg'}
    print(dict1)
    ret = sorted(zip(dict1.values(),dict1.keys()))
    print(ret)
    
    
    结果:
    {'e': 77, 'd': 100, 'b': 51, 'c': 78, 'g': 55, 'f': 80, 'a': 87}
    [(51, 'b'), (55, 'g'), (77, 'e'), (78, 'c'), (80, 'f'), (87, 'a'), (100, 'd')]

     2、sorted函数默认对每个迭代对象的第一个元素进行排序,可以通过指定key参数(传入一个函数,sorted每次迭代时会把选择的元素传入key中,然后让我们决定使用哪个元素作为排序对象)来排序

    from random import randint
    dict1 = {x:randint(50,100) for x in 'abcdefg'}
    print(dict1)
    print(dict1.items())
    ret = sorted(dict1.items(),key=lambda x:x[1])
    print(ret)
    
    结果:
    {'a': 64, 'f': 51, 'd': 67, 'e': 73, 'c': 57, 'g': 100, 'b': 71}
    dict_items([('a', 64), ('f', 51), ('d', 67), ('e', 73), ('c', 57), ('g', 100), ('b', 71)])
    [('f', 51), ('c', 57), ('a', 64), ('d', 67), ('b', 71), ('e', 73), ('g', 100)]
  • 相关阅读:
    hive 之only supports newline ' ' right now. Error encountered near token ''报错
    四、第三方图标库
    三、工具模块封装(二):封装mock模块
    三、工具模块封装(一):封装axios模块
    二、前端项目案例
    一、搭建前端开发环境(Vue+element)
    注册中心(Consul)
    系统服务监控(Spring Boot Admin)
    JWT
    Spring Security(四)
  • 原文地址:https://www.cnblogs.com/laonicc/p/6706754.html
Copyright © 2020-2023  润新知