• python数据分析2之numpy


     

     源代码

     1 # -*- coding: utf-8 -*-
     2 """
     3 Spyder Editor
     4 
     5 This is a temporary script file.
     6 """
     7 
     8 import numpy as np
     9 a = np.array([1, 2, 3])
    10 b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    11 b[1,1]=10
    12 print(a.shape)#3
    13 print(b.shape)#(3,3)
    14 print(a.dtype)#int32
    15 
    16 import numpy as np
    17 persontype = np.dtype({
    18     'names':['name', 'age', 'chinese', 'math', 'english'],
    19     'formats':['S32','i', 'i', 'i', 'f']})
    20 peoples = np.array([("lisi",32,75,100, 90),("wangW",24,85,96,88.5),
    21        ("ZhaoYun",28,85,92,96.5),("HuangZhong",29,65,85,100)],
    22     dtype=persontype)
    23 ages = peoples[:]['age']
    24 chineses = peoples[:]['chinese']
    25 maths = peoples[:]['math']
    26 englishs = peoples[:]['english']
    27 print(np.mean(ages))#计算平均值
    28 print(np.mean(chineses))
    29 print(np.mean(maths))
    30 print(np.mean(englishs))
    31 
    32 x1 = np.arange(1,11,2)
    33 x2 = np.linspace(1,9,5)
    34 
    35 x1 = np.arange(1,11,2)
    36 x2 = np.linspace(1,9,5)
    37 print(np.add(x1, x2))#[ 2.  6. 10. 14. 18.]
    38 print(np.subtract(x1, x2))
    39 #print(np.multiply((x1,x2)))
    40 print(np.divide(x1, x2))
    41 print(np.power(x1, x2))
    42 print(np.remainder(x1, x2))
    43 
    44 
    45 import numpy as np
    46 a=np.array([[1,2,3],[4,5,6],[7,8,9]])
    47 print(np.amin(a))#1
    48 print(np.amin(a,0))#[1 2 3]
    49                   
    50 print(np.amin(a,1)) #[1 4 7]
    51 print(np.amax(a))#9
    52 print(np.amax(a,0))#[7 8 9]
    53 print(np.amax(a,1))#[3 6 9]
    54 
    55 a = np.array([[1,2,3], [4,5,6], [7,8,9]])
    56 print(np.ptp(a))#8 所有元素中最大和最小的差值
    57 print(np.ptp(a,0))#[6 6 6]
    58 print(np.ptp(a,1))#[2 2 2]
    59 
    60 a = np.array([1,2,3,4])
    61 wts = np.array([1,2,3,4])
    62 print(np.average(a))#2.5
    63 #print(np.average((a,weights=wts))
    64 
    65 a = np.array([1,2,3,4])
    66 print(np.std(a))
    67 print(np.var(a))
    68 
    69 a = np.array([[4,3,2],[2,4,1]])
    70 print(np.sort(a))#每个子元素排序
    71 print(np.sort(a, axis=None))#
    72 print(np.sort(a, axis=0))  
    73 print(np.sort(a, axis=1))  
    View Code
  • 相关阅读:
    如何创建线程详解(二)
    JAVA 多线程和进程概念的引入
    JMeter压力测试
    建模揭秘----构建用户模型
    浅谈“领域驱动设计”
    Restlet 学习笔记
    实则以数据库为中心---其实数据库不存在
    基于可重用构件的软件开发过程模型
    四层架构设计模型驱动
    架构
  • 原文地址:https://www.cnblogs.com/lanjianhappy/p/11950290.html
Copyright © 2020-2023  润新知