• 如何直观的解释back propagation算法?


    转自:知乎-https://www.zhihu.com/question/27239198

    作者:匿名用户
    链接:https://www.zhihu.com/question/27239198/answer/89853077
    来源:知乎
    著作权归作者所有,转载请联系作者获得授权。

    BackPropagation算法是多层神经网络的训练中举足轻重的算法。
    简单的理解,它的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。
    要回答题主这个问题“如何直观的解释back propagation算法?” 需要先直观理解多层神经网络的训练。

    机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定一些样本点,用合适的曲线揭示这些样本点随着自变量的变化关系。

    深度学习同样也是为了这个目的,只不过此时,样本点不再限定为(x, y)点对,而可以是由向量、矩阵等等组成的广义点对(X,Y)。而此时,(X,Y)之间的关系也变得十分复杂,不太可能用一个简单函数表示。然而,人们发现可以用多层神经网络来表示这样的关系,而多层神经网络的本质就是一个多层复合的函数。借用网上找到的一幅图[1],来直观描绘一下这种复合关系。

    其对应的表达式如下:

    上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b。

    和直线拟合一样,深度学习的训练也有一个目标函数,这个目标函数定义了什么样的参数才算一组“好参数”,不过在机器学习中,一般是采用成本函数(cost function),然后,训练目标就是通过调整每一个权值Wij来使得cost达到最小。cost函数也可以看成是由所有待求权值Wij为自变量的复合函数,而且基本上是非凸的,即含有许多局部最小值。但实际中发现,采用我们常用的梯度下降法就可以有效的求解最小化cost函数的问题。

    梯度下降法需要给定一个初始点,并求出该点的梯度向量,然后以负梯度方向为搜索方向,以一定的步长进行搜索,从而确定下一个迭代点,再计算该新的梯度方向,如此重复直到cost收敛。那么如何计算梯度呢?

    假设我们把cost函数表示为H(W_{11}, W_{12}, cdots , W_{ij}, cdots, W_{mn}), 那么它的梯度向量[2]就等于
abla H  = frac{partial H}{partial W_{11} }mathbf{e}_{11} + cdots + frac{partial H}{partial W_{mn} }mathbf{e}_{mn}, 其中mathbf{e}_{ij}表示正交单位向量。为此,我们需求出cost函数H对每一个权值Wij的偏导数。而BP算法正是用来求解这种多层复合函数的所有变量的偏导数的利器

    我们以求e=(a+b)*(b+1)的偏导[3]为例。
    它的复合关系画出图可以表示如下:
    在图中,引入了中间变量c,d。

    为了求出a=2, b=1时,e的梯度,我们可以先利用偏导数的定义求出不同层之间相邻节点的偏导关系,如下图所示。
    利用链式法则我们知道:
    frac{partial e}{partial a}=frac{partial e}{partial c}cdot frac{partial c}{partial a}以及frac{partial e}{partial b}=frac{partial e}{partial c}cdot frac{partial c}{partial b}+frac{partial e}{partial d}cdot frac{partial d}{partial b}

    链式法则在上图中的意义是什么呢?其实不难发现,frac{partial e}{partial a}的值等于从a到e的路径上的偏导值的乘积,而frac{partial e}{partial b}的值等于从b到e的路径1(b-c-e)上的偏导值的乘积加上路径2(b-d-e)上的偏导值的乘积。也就是说,对于上层节点p和下层节点q,要求得frac{partial p}{partial q},需要找到从q节点到p节点的所有路径,并且对每条路径,求得该路径上的所有偏导数之乘积,然后将所有路径的 “乘积” 累加起来才能得到frac{partial p}{partial q}的值。

    大家也许已经注意到,这样做是十分冗余的,因为很多路径被重复访问了。比如上图中,a-c-e和b-c-e就都走了路径c-e。对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。

    同样是利用链式法则,BP算法则机智地避开了这种冗余,它对于每一个路径只访问一次就能求顶点对所有下层节点的偏导值。
    正如反向传播(BP)算法的名字说的那样,BP算法是反向(自上往下)来寻找路径的。

    从最上层的节点e开始,初始值为1,以层为单位进行处理。对于e的下一层的所有子节点,将1乘以e到某个节点路径上的偏导值,并将结果“堆放”在该子节点中。等e所在的层按照这样传播完毕后,第二层的每一个节点都“堆放"些值,然后我们针对每个节点,把它里面所有“堆放”的值求和,就得到了顶点e对该节点的偏导。然后将这些第二层的节点各自作为起始顶点,初始值设为顶点e对它们的偏导值,以"层"为单位重复上述传播过程,即可求出顶点e对每一层节点的偏导数。

    以上图为例,节点c接受e发送的1*2并堆放起来,节点d接受e发送的1*3并堆放起来,至此第二层完毕,求出各节点总堆放量并继续向下一层发送。节点c向a发送2*1并对堆放起来,节点c向b发送2*1并堆放起来,节点d向b发送3*1并堆放起来,至此第三层完毕,节点a堆放起来的量为2,节点b堆放起来的量为2*1+3*1=5, 即顶点e对b的偏导数为5.

    举个不太恰当的例子,如果把上图中的箭头表示欠钱的关系,即c→e表示e欠c的钱。以a, b为例,直接计算e对它们俩的偏导相当于a, b各自去讨薪。a向c讨薪,c说e欠我钱,你向他要。于是a又跨过c去找e。b先向c讨薪,同样又转向e,b又向d讨薪,再次转向e。可以看到,追款之路,充满艰辛,而且还有重复,即a, b 都从c转向e。

    而BP算法就是主动还款。e把所欠之钱还给c,d。c,d收到钱,乐呵地把钱转发给了a,b,皆大欢喜。
    ------------------------------------------------------------------
    【参考文献】
    [1] 技术向:一文读懂卷积神经网络CNN
    [2] Gradient
    [3]
    其他推荐网页:
    1. tensorflow.org 的页面
    2. Neural networks and deep learning
  • 相关阅读:
    【科创人上海行】扶墙老师王福强:架构师创业要突破思维局限,技术人创业的三种模式,健康第一
    【科创人·独家】连续创业者高春辉的这六年:高强度投入打造全球领先的IP数据库
    中国确实需要大力扩充核武器
    SAP MM 可以通过STO在公司间转移质检库存?
    SAP MM 如何看一个采购申请是由APO系统创建后同步过来的?
    SAP MM 如何看一个Inbound Delivery单据相关的IDoc?
    SAP ECC & APO集成
    SAP MM 采购订单收货之后自动形成分包商库存?
    SAP MM 带有'Return'标记的STO,不能创建内向交货单?
    SAP MM 没有启用QM的前提下可以从QI库存里退货给Vendor?
  • 原文地址:https://www.cnblogs.com/laiqun/p/6116494.html
Copyright © 2020-2023  润新知