/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool isValidBST(TreeNode *root) { return dfs(root, 0, 0, 0); } bool dfs(TreeNode *root, int lower, int upper, int part) { if (root == NULL) return true; if ((part & 0x1) && lower >= root->val) return false; if ((part & 0x2) && upper <= root->val) return false; return dfs(root->left, lower, root->val, part | 0x2) && dfs(root->right, root->val, upper, part | 0x1); } };
dfs,初最左边和最右边的分支(前者只有上界,后者只有下界),其他节点都有一个上界和下界,将节点值和这个范围比较即可。
第二轮:
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
还可以使用中序遍历检测遍历得到的序列是否是递增的
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { private: bool val_set; int pre_val; public: bool isValidBST(TreeNode *root) { val_set = false; return inorder(root); } bool inorder(TreeNode* root) { if (root == NULL) { return true; } if (!inorder(root->left)) { return false; } if (!val_set) { pre_val = root->val; val_set = true; } else { if (pre_val >= root->val) { return false; } pre_val = root->val; } return inorder(root->right); } };