• 经典动态规划:子集背包问题


    读完本文,你可以去力扣拿下如下题目:

    416.分割等和子集

    -----------

    上篇文章 经典动态规划:0-1 背包问题 详解了通用的 0-1 背包问题,今天来看看背包问题的思想能够如何运用到其他算法题目。

    而且,不是经常有读者问,怎么将二维动态规划压缩成一维动态规划吗?这就是状态压缩,很容易的,本文也会提及这种技巧。

    一、问题分析

    先看一下题目:

    title

    算法的函数签名如下:

    // 输入一个集合,返回是否能够分割成和相等的两个子集
    bool canPartition(vector<int>& nums);
    

    对于这个问题,看起来和背包没有任何关系,为什么说它是背包问题呢?

    首先回忆一下背包问题大致的描述是什么:

    给你一个可装载重量为 W 的背包和 N 个物品,每个物品有重量和价值两个属性。其中第 i 个物品的重量为 wt[i],价值为 val[i],现在让你用这个背包装物品,最多能装的价值是多少?

    那么对于这个问题,我们可以先对集合求和,得出 sum,把问题转化为背包问题:

    给一个可装载重量为 sum / 2 的背包和 N 个物品,每个物品的重量为 nums[i]。现在让你装物品,是否存在一种装法,能够恰好将背包装满

    你看,这就是背包问题的模型,甚至比我们之前的经典背包问题还要简单一些,下面我们就直接转换成背包问题,开始套前文讲过的背包问题框架即可。

    PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

    二、解法分析

    第一步要明确两点,「状态」和「选择」

    这个前文 经典动态规划:背包问题 已经详细解释过了,状态就是「背包的容量」和「可选择的物品」,选择就是「装进背包」或者「不装进背包」。

    第二步要明确 dp 数组的定义

    按照背包问题的套路,可以给出如下定义:

    dp[i][j] = x 表示,对于前 i 个物品,当前背包的容量为 j 时,若 xtrue,则说明可以恰好将背包装满,若 xfalse,则说明不能恰好将背包装满。

    比如说,如果 dp[4][9] = true,其含义为:对于容量为 9 的背包,若只是用前 4 个物品,可以有一种方法把背包恰好装满。

    或者说对于本题,含义是对于给定的集合中,若只对前 4 个数字进行选择,存在一个子集的和可以恰好凑出 9。

    根据这个定义,我们想求的最终答案就是 dp[N][sum/2],base case 就是 dp[..][0] = truedp[0][..] = false,因为背包没有空间的时候,就相当于装满了,而当没有物品可选择的时候,肯定没办法装满背包。

    第三步,根据「选择」,思考状态转移的逻辑

    回想刚才的 dp 数组含义,可以根据「选择」对 dp[i][j] 得到以下状态转移:

    如果不把 nums[i] 算入子集,或者说你不把这第 i 个物品装入背包,那么是否能够恰好装满背包,取决于上一个状态 dp[i-1][j],继承之前的结果。

    如果把 nums[i] 算入子集,或者说你把这第 i 个物品装入了背包,那么是否能够恰好装满背包,取决于状态 dp[i-1][j-nums[i-1]]

    首先,由于 i 是从 1 开始的,而数组索引是从 0 开始的,所以第 i 个物品的重量应该是 nums[i-1],这一点不要搞混。

    dp[i - 1][j-nums[i-1]] 也很好理解:你如果装了第 i 个物品,就要看背包的剩余重量 j - nums[i-1] 限制下是否能够被恰好装满。

    换句话说,如果 j - nums[i-1] 的重量可以被恰好装满,那么只要把第 i 个物品装进去,也可恰好装满 j 的重量;否则的话,重量 j 肯定是装不满的。

    最后一步,把伪码翻译成代码,处理一些边界情况

    以下是我的 C++ 代码,完全翻译了之前的思路,并处理了一些边界情况:

    bool canPartition(vector<int>& nums) {
        int sum = 0;
        for (int num : nums) sum += num;
        // 和为奇数时,不可能划分成两个和相等的集合
        if (sum % 2 != 0) return false;
        int n = nums.size();
        sum = sum / 2;
        vector<vector<bool>> 
            dp(n + 1, vector<bool>(sum + 1, false));
        // base case
        for (int i = 0; i <= n; i++)
            dp[i][0] = true;
        
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= sum; j++) {
                if (j - nums[i - 1] < 0) {
                   // 背包容量不足,不能装入第 i 个物品
                    dp[i][j] = dp[i - 1][j]; 
                } else {
                    // 装入或不装入背包
                    dp[i][j] = dp[i - 1][j] || dp[i - 1][j-nums[i-1]];
                }
            }
        }
        return dp[n][sum];
    }
    

    PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

    三、进行状态压缩

    再进一步,是否可以优化这个代码呢?注意到 dp[i][j] 都是通过上一行 dp[i-1][..] 转移过来的,之前的数据都不会再使用了。

    所以,我们可以进行状态压缩,将二维 dp 数组压缩为一维,节约空间复杂度:

    bool canPartition(vector<int>& nums) {
        int sum = 0, n = nums.size();
        for (int num : nums) sum += num;
        if (sum % 2 != 0) return false;
        sum = sum / 2;
        vector<bool> dp(sum + 1, false);
        // base case
        dp[0] = true;
    
        for (int i = 0; i < n; i++) 
            for (int j = sum; j >= 0; j--) 
                if (j - nums[i] >= 0) 
                    dp[j] = dp[j] || dp[j - nums[i]];
    
        return dp[sum];
    }
    

    这就是状态压缩,其实这段代码和之前的解法思路完全相同,只在一行 dp 数组上操作,i 每进行一轮迭代,dp[j] 其实就相当于 dp[i-1][j],所以只需要一维数组就够用了。

    唯一需要注意的是 j 应该从后往前反向遍历,因为每个物品(或者说数字)只能用一次,以免之前的结果影响其他的结果

    至此,子集切割的问题就完全解决了,时间复杂度 O(n*sum),空间复杂度 O(sum)。

    _____________

    我的 在线电子书 有 100 篇原创文章,手把手带刷 200 道力扣题目,建议收藏!对应的 GitHub 算法仓库 已经获得了 70k star,欢迎标星!

  • 相关阅读:
    mac上命令行解压rar
    Mac上安装PHP、Apache、MySQL
    8款不错的 CI/CD工具
    Apache 强制Http跳转Https
    使用MySQL的mysqldump命令备份数据库和把数据库备份文件恢复
    MySQL主从复制和读写分离
    Nginx参数调优
    【原创】深入理解Docker容器和镜像 -- 分析了docker的命令含义
    Elasticsearch使用备忘
    通过HTTP RESTful API 操作elasticsearch搜索数据
  • 原文地址:https://www.cnblogs.com/labuladong/p/13927956.html
Copyright © 2020-2023  润新知