1. 数据准备:收集数据与读取
2. 数据预处理:处理数据
3. 训练集与测试集:将先验数据按一定比例进行拆分。
4. 提取数据特征,将文本解析为词向量 。
5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y),后得到各类下词汇出现概率的向量 。
6. 测试模型:用测试数据集评估模型预测的正确率。
混淆矩阵
准确率、精确率、召回率、F值
7. 预测一封新邮件的类别。
8. 考虑如何进行中文的文本分类(期末作业之一)。
要点:
理解朴素贝叶斯算法
理解机器学习算法建模过程
理解文本常用处理流程
理解模型评估方法
import csv from sklearn.model_selection import train_test_split import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.naive_bayes import MultinomialNB # 预处理 def preprocessing(text): # text = text.decode("utf-8") tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # 进行分词 stops = stopwords.words('a') # 去掉停用词 tokens = [token for token in tokens if token not in stops] tokens = [token.lower() for token in tokens if len(token) >= 3] lmtzr = WordNetLemmatizer() # 还原词性 tokens = [lmtzr.lemmatize(token) for token in tokens] preprocessed_text = ' '.join(tokens) return preprocessed_text def read_data(): '''读取文件并进行预处理''' sms=open(r'G:大三数据挖掘SMSSSMSSpamCollectionjs.txt','r',encoding='utf-8') sms_data = [] sms_label = [] csv_reader=csv.reader(sms,delimiter=' ') nltk.download('punkt') nltk.download('wordnet') for line in csv_reader: print(line) sms_label.append(line[0]) sms_data.append(preprocessing(line[1])) sms.close() x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label) print(len(sms_data),len(x_train),len(x_test)) print(x_train) return sms_data,sms_label,x_train,x_test,y_train,y_test # 向量化 def xiangliang(x_train, x_test): from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer(min_df=2, ngram_range=(1, 2), stop_words='a', strip_accents='unicode') # ,norm='12' x_train = vectorizer.fit_transform(x_train) x_test = vectorizer.transform(x_test) return x_train, x_test, vectorizer # 朴素贝叶斯分类器 def beiNB(x_train, y_train, x_test): clf = MultinomialNB().fit(x_train, y_train) y_nb_pred = clf.predict(x_test) return y_nb_pred, clf def result(vectorizer, clf): # 分类结果 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report print(y_nb_pred.shape, y_nb_pred) print('nb_confusion_matrix:') cm = confusion_matrix(y_test, y_nb_pred) print(cm) cr = classification_report(y_test, y_nb_pred) print(cr) feature_names = vectorizer.get_feature_names() coefs = clf.coef_ intercept = clf.intercept_ coefs_with_fns = sorted(zip(coefs[0], feature_names)) n = 10 top = zip(coefs_with_fns[:n], coefs_with_fns[:-(n + 1):-1]) for (coef_1, fn_1), (coef_2, fn_2) in top: print(' %.4f %-15s %.4f %-15s' % (coef_1, fn_1, coef_2, fn_2))
if __name__ == '__main__': sms_data, sms_lable, x_train, x_test, y_train, y_test = read_data() X_train, X_test, vectorizer = xiangliang(x_train, x_test) y_nb_pred, clf = beiNB(X_train, y_train, X_test) result(vectorizer, clf)