1.使用朴素贝叶斯模型对iris数据集进行花分类
尝试使用3种不同类型的朴素贝叶斯:
高斯分布型
from sklearn.datasets import load_iris iris=load_iris() from sklearn.naive_bayes import GaussianNB gnb=GaussianNB() pred=gnb.fit(iris.data,iris.target) y_pred=pred.predict(iris.data) print(iris.data.shape[0],(iris.target!=y_pred).sum())
多项式型
from sklearn import datasets iris=datasets.load_iris() from sklearn.naive_bayes import MultinomialNB gnb=MultinomialNB() pred=gnb.fit(iris.data,iris.target) y_pred=pred.predict(iris.data) print(iris.data.shape[0],(iris.target!=y_pred).sum())
伯努利型
from sklearn import datasets iris=datasets.load_iris() from sklearn.naive_bayes import BernoulliNB gnb=BernoulliNB() pred=gnb.fit(iris.data,iris.target) y_pred=pred.predict(iris.data) print(iris.data.shape[0],(iris.target!=y_pred).sum())
运行结果:
2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。
from sklearn.naive_bayes import GaussianNB #高斯 from sklearn.model_selection import cross_val_score gnb=GaussianNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean()) from sklearn.naive_bayes import BernoulliNB #伯努利 from sklearn.model_selection import cross_val_score gnb=BernoulliNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean()) from sklearn.naive_bayes import MultinomialNB #多项式 from sklearn.model_selection import cross_val_score gnb=MultinomialNB() scores=cross_val_score(gnb,iris.data,iris.target,cv=10) print("Accuracy:%.3f"%scores.mean())
运行结果:
3. 垃圾邮件分类
数据准备:
• 用csv读取邮件数据,分解出邮件类别及邮件内容。
import csv file_path = r"C:/Users/Administrator/Desktop/SMSSpamCollectionjsn.txt" sms = open(file_path,'r',encoding = 'utf-8') sms_data = [] sms_label = [] csv_reader = csv.reader(sms,delimiter=' ') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() sms_data sms_label
运行结果:
• 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等
尝试使用nltk库:
pip install nltk
import nltk
nltk.download
不成功:就使用词频统计的处理方法
import csv
file_path=r"C:/Users/E5-572/Desktop/SMSSpamCollectionjsn.txt"
sms=open(file_path,'r',encoding='utf-8')
sms_data=[]
sms_label=[]
csv_reader=csv.reader(sms,delimiter=' ')
for line in csv_reader:
sms_label.append(line[0])
sms_data.append(line[1])
sms.close()
print("邮件总数:",len(sms_label))
print(sms_label)
print(sms_data)
训练集和测试集数据划分
• from sklearn.model_selection import train_test_split
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size = 0.3,random_state=0,stratify=sms_label) x_train x_test