给定平面上 n 对不同的点,“回旋镖” 是由点表示的元组 (i, j, k) ,其中 i 和 j 之间的距离和 i 和 k 之间的距离相等(需要考虑元组的顺序)。
找到所有回旋镖的数量。你可以假设 n 最大为 500,所有点的坐标在闭区间 [-10000, 10000] 中。
示例:
输入: [[0,0],[1,0],[2,0]] 输出: 2 解释: 两个回旋镖为 [[1,0],[0,0],[2,0]] 和 [[1,0],[2,0],[0,0]]
暴力:
class Solution {
public:
int Distance(int x1, int x2, int y1, int y2)
{
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
}
int numberOfBoomerangs(vector<pair<int, int>>& points)
{
int cnt = 0;
int len = points.size();
for (int i = 0; i < len - 2; i++)
{
for (int j = i + 1; j < len - 1; j++)
{
for (int k = j + 1; k < len; k++)
{
if (Distance(points[i].first, points[j].first, points[i].second, points[j].second) ==
Distance(points[i].first, points[k].first, points[i].second, points[k].second))
cnt++;
if (Distance(points[j].first, points[i].first, points[j].second, points[i].second) ==
Distance(points[j].first, points[k].first, points[j].second, points[k].second))
cnt++;
if (Distance(points[k].first, points[i].first, points[k].second, points[i].second) ==
Distance(points[k].first, points[j].first, points[k].second, points[j].second))
cnt++;
}
}
}
return cnt * 2;
}
};