链接:https://www.nowcoder.com/acm/contest/141/E
来源:牛客网
Eddy likes to play with string which is a sequence of characters. One day, Eddy has played with a string S for a long time and wonders how could make it more enjoyable. Eddy comes up with following procedure:
1. For each i in [0,|S|-1], let Si be the substring of S starting from i-th character to the end followed by the substring of first i characters of S. Index of string starts from 0.
2. Group up all the Si. Si and Sj will be the same group if and only if Si=Sj.
3. For each group, let Lj be the list of index i in non-decreasing order of Si in this group.
4. Sort all the Lj by lexicographical order.
Eddy can't find any efficient way to compute the final result. As one of his best friend, you come to help him compute the answer!
1. For each i in [0,|S|-1], let Si be the substring of S starting from i-th character to the end followed by the substring of first i characters of S. Index of string starts from 0.
2. Group up all the Si. Si and Sj will be the same group if and only if Si=Sj.
3. For each group, let Lj be the list of index i in non-decreasing order of Si in this group.
4. Sort all the Lj by lexicographical order.
Eddy can't find any efficient way to compute the final result. As one of his best friend, you come to help him compute the answer!
输入描述:
Input contains only one line consisting of a string S.
1≤ |S|≤ 10
6
S only contains lowercase English letters(i.e.
).
输出描述:
First, output one line containing an integer K indicating the number of lists.
For each following K lines, output each list in lexicographical order.
For each list, output its length followed by the indexes in it separated by a single space.
示例2
输出
复制8 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7
题意:根据原字符串构造新串,对于原字符串从0~|S|-1,i从0开始,从i到最后的子串放到从0到i-1子串的前面。对于这些新构造的子串,从0开始编号,将相同的新字符串们归为一组,输出一共有多少组,每组有多少个新字符串,以及新字符串的编号。
分析:按照题目的意思一步步来
(1)对于第一种条件,我们需要将字符串分成n个子串,从i=0开始,将i后面的子串放到前面去,这样生成n个子串
(2)然后对于每个子串我们需要将相同的子串放在一个集合内,这样产生m个集合
(3)每个集合内的子串按照他在原来的主串中的切割位置按递增排序
(4)将集合按照其内的切割位置按照字典序排序
然后我们来分析做法
首先是暴力做法:
(1)直接记录每个子串,用string自带的substr函数(看源码这个函数的时间复杂度为O(n))
(2)我们用map记录下每个字符串出现的次数,则map里的每个字符串就有了自己对应的集合
(3)在用map记录时,我们可以用个vector数组记录下每个字符串切割的位置
(4)将vector存在一个结构体里面,然后将vector里的值转成string,通过比较string排序
如果这样暴力做的话很明显会时间超限,内存超限(当n为10^6时,map和结构体内的每个string存了10^6长的字符串会超内存限制)
我们肯定不能通过存字符串来进行操作,于是我们想到了用哈希处理字符串,然后存下每个字符串的哈希值,注意此时要保证的是每个字符串的哈希值独一无二(如果你有时间可以计算下10^6个字符转化成整数最大的值),我是通过几次wa得出用哈希取余的值要大于10^12
用哈希处理字符串后我们可以得到一个哈希的数组,然后我们可以用过一次sort排序将哈希值(字符串的值)按从小到大排序,这样不仅相同的字符串会在一起而且可以得到一个有序的哈希序列
接下来我们直接遍历哈希数组,将相同的值加入同一个集合内(我用了一个数组存集合),判断的时候因为相同的在一起,所以如果后面等于前面i可以一直加,用一个数组保存i加了多少次,那么这个数组的每个值就对应了每个集合的长度,这样方便了我们以后遍历集合
中间还有些细节操作看代码把
#include <map> #include <set> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <vector> #include <string> #include <cstring> #include <iomanip> #include <iostream> #include <algorithm> #define debug(a) cout << #a << " " << a << endl using namespace std; typedef long long ll; const ll maxn = 1e6+10; const ll mod = 1000000000000023; char s[maxn]; ll n, k, ans; ll a[maxn], len[maxn], vis[maxn]; struct node { ll sum, pos; }h[maxn]; bool cmp( node p, node q ) { if( p.sum == q.sum ) { return p.pos < q.pos; } return p.sum < q.sum; } int main() { ios::sync_with_stdio(0),cin.tie(0),cout.tie(0); scanf("%s",s); for( ll i = 0; i < maxn; i ++ ) { a[i] = len[i] = vis[i] = h[i].sum = h[i].pos = 0; } ll n = strlen(s); ll t = 1; for( ll i = 0; i < n; i ++ ) { h[0].sum = ( h[0].sum*37 + s[i]-'?' ) % mod; if( i ) { t = 37*t%mod; } } for( ll i = 1; i < n; i ++ ) { h[i].sum = ( (h[i-1].sum-t*(s[i-1]-'?')%mod+mod)*37+s[i-1]-'?' )%mod; h[i].pos = i; } sort( h, h+n, cmp ); k = 0; for( ll i = 0; i < n; i ++ ) { t = i; while( t+1<n && h[t+1].sum==h[t].sum ) { t ++; } a[++k] = i; len[k] = t-i+1; vis[h[i].pos] = k; i = t; } ans = 0; for( ll i = 0; i < n; i ++ ) { if( vis[i] ) { ans ++; } }; printf("%lld ",ans); for( ll i = 0; i < n; i ++ ) { if( vis[i] ) { printf("%lld",len[vis[i]]); for( ll j = a[vis[i]]; j < a[vis[i]]+len[vis[i]]; j ++ ) { printf(" %lld",h[j].pos); } printf(" "); } } return 0; }