• count(distinct) 与group by 浅析


    x在传统关系型数据库中,group by与count(distinct)都是很常见的操作。count(distinct colA)就是将colA中所有出现过的不同值取出来,相信只要接触过数据库的同学都能明白什么意思。

    count(distinct colA)的操作也可以用group by的方式完成,具体代码如下:

    select count(distinct colA) from table1;
    select count(1) from (select colA from table1 group by colA) alias_1;

    这两者最后得出的结果是一致的,但是具体的实现方式,有什么不同呢?
    上面两种方式本质就是时间与空间的权衡。
    distinct需要将colA中的所有内容都加载到内存中,大致可以理解为一个hash结构,key自然就是colA的所有值。因为是hash结构,那运算速度自然就快。最后计算hash中有多少key就是最终的结果。
    那么问题来了,在现在的海量数据环境下,需要将所有不同的值都存起来,这个内存消耗,是可想而知的。所以如果数据量特别大,可能会out of memory。。。

    group by的实现方式是先将colA排序。排序大家都不陌生,拿最见得快排来说,时间复杂度为O(nlogn)

    ,而空间复杂度只有O(1)。这样一来,即使数据量再大一些,group by基本也能hold住。但是因为需要做一次O(nlogn)

    的排序,时间自然会稍微慢点。。。

    总结起来就是,count(distinct)吃内存,查询快;group by空间复杂度小,在时间复杂度允许的情况下,可以发挥他的空间复杂度优势。

  • 相关阅读:
    SVN服务器搭建和使用(二)
    SVN服务器搭建和使用(一)
    【CentOs】配置nginx
    【CentOs】sudo使用
    【CentOS】搭建Web服务器
    【CentOS】搭建git服务器
    【Python】内置数据类型
    【Python】Eclipse和pydev搭建Python开发环境
    【Python】一个简单的例子
    【Python】vim7.4 配置python2.6支持Gundo
  • 原文地址:https://www.cnblogs.com/l1pe1/p/9008995.html
Copyright © 2020-2023  润新知