• Python列表生成式、迭代器、生成器


    >>> list(range(1, 11))
    [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
    
    但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:
    >>> L = []
    >>> for x in range(1, 11):
    ...    L.append(x * x)
    ...
    >>> L
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
    
    但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
    >>> [x * x for x in range(1, 11)]
    [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
    
    写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来。
    
    for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
    >>> [x * x for x in range(1, 11) if x % 2 == 0]
    [4, 16, 36, 64, 100]
    
    还可以使用两层循环,可以生成全排列:
    >>> [m + n for m in 'ABC' for n in 'XYZ']
    ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
    
    三层和三层以上的循环就很少用到了。
    运用列表生成式,可以写出非常简洁的代码。
    例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:
    >>> import os # 导入os模块,模块的概念后面讲到
    >>> [d for d in os.listdir('.')] # os.listdir可以列出文件和目录
    ['.emacs.d', '.ssh', '.Trash', 'Adlm', 'Applications', 'Desktop', 'Documents', 'Downloads', 'Library', 'Movies', 'Music', 'Pictures', 'Public', 'VirtualBox VMs', 'Workspace', 'XCode']
    
    for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:
    >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
    >>> for k, v in d.items():
    ...     print(k, '=', v)
    ...
    y = B
    x = A
    z = C
    
    因此,列表生成式也可以使用两个变量来生成list:
    >>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
    >>> [k + '=' + v for k, v in d.items()]
    ['y=B', 'x=A', 'z=C']
    
    最后把一个list中所有的字符串变成小写:
    >>> L = ['Hello', 'World', 'IBM', 'Apple']
    >>> [s.lower() for s in L]
    ['hello', 'world', 'ibm', 'apple']
    
    
    if ... else
    
    使用列表生成式的时候,需要注意if...else的用法。
    例如,以下代码正常输出偶数:
    >>> [x for x in range(1, 11) if x % 2 == 0]
    [2, 4, 6, 8, 10]
    
    但是,我们不能在最后的if加上else:
    >>> [x for x in range(1, 11) if x % 2 == 0 else 0]
      File "<stdin>", line 1
        [x for x in range(1, 11) if x % 2 == 0 else 0]
                                                  ^
    SyntaxError: invalid syntax
    
    这是因为跟在for后面的if是一个筛选条件,不能带else,否则如何筛选?
    如果把if写在for前面必须加else,否则报错:
    
    >>> [x if x % 2 == 0 for x in range(1, 11)]
      File "<stdin>", line 1
        [x if x % 2 == 0 for x in range(1, 11)]
                           ^
    SyntaxError: invalid syntax
    
    这是因为for前面的部分是一个表达式,它必须根据x计算出一个结果。因此,考察表达式:x if x % 2 == 0,它无法根据x计算出结果,因为缺少else,必须加上else:
    >>> [x if x % 2 == 0 else -x for x in range(1, 11)]
    [-1, 2, -3, 4, -5, 6, -7, 8, -9, 10]
    
    上述for前面的表达式x if x % 2 == 0 else -x才能根据x计算出确定的结果。
    可见,在一个列表生成式中,for前面的if ... else是表达式,而for后面的if是过滤条件,不能带else。
    
    
    生成器
    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,
    如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
    
    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,
    从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
    
    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    <generator object <genexpr> at 0x1022ef630>
    
    创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
    我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:
    
    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration
    
    我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
    当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
    
    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)
    ... 
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81
    
    所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。
    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。
    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
    1, 1, 2, 3, 5, 8, 13, 21, 34, ...
    
    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
    
    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'
        
    注意,赋值语句:
    a, b = b, a + b
    
    相当于:
    t = (b, a + b) # t是一个tuple
    a = t[0]
    b = t[1]
    
    但不必显式写出临时变量t就可以赋值。
    上面的函数可以输出斐波那契数列的前N个数:
    >>> fib(6)
    1
    1
    2
    3
    5
    8
    'done'
    
    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:
    
    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            yield b
            a, b = b, a + b
            n = n + 1
        return 'done'
        
    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>
    
    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,
    在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
    举个简单的例子,定义一个generator,依次返回数字1,3,5def odd():
        print('step 1')
        yield(1)
        print('step 2')
        yield(3)
        print('step 3')
        yield(5)
        
    调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:
    
    >>> o = odd()
    >>> next(o)
    step 1
    1
    >>> next(o)
    step 2
    3
    >>> next(o)
    step 3
    5
    >>> next(o)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration
    
    可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。
    执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。
    回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
    
    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:
    
    >>> for n in fib(6):
    ...     print(n)
    ...
    1
    1
    2
    3
    5
    8
    
    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:
    
    >>> g = fib(6)
    >>> while True:
    ...     try:
    ...         x = next(g)
    ...         print('g:', x)
    ...     except StopIteration as e:
    ...         print('Generator return value:', e.value)
    ...         break
    ...
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    Generator return value: done
    
    
    迭代器
    我们已经知道,可以直接作用于for循环的数据类型有以下几种:
    一类是集合数据类型,如list、tuple、dict、set、str等;
    
    一类是generator,包括生成器和带yield的generator function。
    
    这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
    
    可以使用isinstance()判断一个对象是否是Iterable对象:
    
    >>> from collections.abc import Iterable
    >>> isinstance([], Iterable)
    True
    >>> isinstance({}, Iterable)
    True
    >>> isinstance('abc', Iterable)
    True
    >>> isinstance((x for x in range(10)), Iterable)
    True
    >>> isinstance(100, Iterable)
    False
    
    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。
    可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
    
    可以使用isinstance()判断一个对象是否是Iterator对象:
    >>> from collections.abc import Iterator
    >>> isinstance((x for x in range(10)), Iterator)
    True
    >>> isinstance([], Iterator)
    False
    >>> isinstance({}, Iterator)
    False
    >>> isinstance('abc', Iterator)
    False
    
    生成器都是Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator。
    把list、dict、str等Iterable变成Iterator可以使用iter()函数:
    
    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True
    
    你可能会问,为什么list、dict、str等数据类型不是Iterator?
    
    这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。
    可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,
    只有在需要返回下一个数据时它才会计算。
    
    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
  • 相关阅读:
    在Visual Studio中使用NUnit
    C#调用Exe
    网页用chrome打开为乱码
    ctags最基本用法
    Facebook Connect
    SVM初体验
    python中可恶的回车符
    初识PowerDesigner
    Mysql中文乱码问题解决
    stat函数
  • 原文地址:https://www.cnblogs.com/l10n/p/13920230.html
Copyright © 2020-2023  润新知