题目描述
求一个给定的圆(x ^2 +y ^2 = r ^2),在圆周上有多少个点的坐标是整数
Solution
圆上的点坐标通解:(x = dfrac{v^2-u^2}{2},y = duv, r = frac{d(v^2-u^2)}{2})
枚举2r的因子d,对每个d枚举u,然后判断(v^2)是否是完全平方数,以及v与u是否互质。这样求出的答案再乘以4,再加上4(就是圆与坐标轴的交点)就好了。
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
inline long long read() {
long long x = 0; int f = 0; char c = getchar();
while (c < '0' || c > '9') f |= c == '-', c = getchar();
while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
return f? -x : x;
}
long long r, ans;
inline long long gcd(long long x, long long y) {
return y ? gcd(y, x % y) : x;
}
inline bool check(long long u, long long v) {
long long x = (sqrt(v));//判断是否是完全平方数
if (v == x * x) return gcd(u, x) == 1;
return 0;
}
inline long long calc(long long x) {
long long s = 0;
for (long long i = 1; i * i * 2 < x; ++i)//枚举u
s += check(i, x - i * i);
return s;
}
int main() {
r = read();
for (long long d = 1; d * d <= 2 * r; ++d)//枚举d
if (2 * r % d == 0)
ans += calc(2 * r / d) + (d * d == 2 * r? 0 : calc(d));
printf("%lld
", ans * 4 + 4);
return 0;
}