Write a program to find the node at which the intersection of two singly linked lists begins.
For example, the following two linked lists:
A: a1 → a2 ↘ c1 → c2 → c3 ↗ B: b1 → b2 → b3
begin to intersect at node c1/**
* Definition for singly-linked list. * public class ListNode { * int val; * ListNode next; * ListNode(int x) { * val = x; * next = null; * } * } */ public class Solution { public ListNode getIntersectionNode(ListNode headA, ListNode headB) { if(headA==null || headB==null) return null; //我用的是判断环的方法,碰撞点开始到连接点的长度=head到连接点的长度。
//一种更好的方法是线计算出2个链表的长度再移动节点。 ListNode moveA=headA; ListNode moveB=headB; ListNode lastA=null; while(moveA!=null && moveA.next!=null) moveA=moveA.next; while(moveB!=null && moveB.next!=null) moveB=moveB.next; if(moveA!=moveB) return null; else { lastA=moveA; moveA.next=headB; } ListNode slow=headA.next; ListNode fast=headA.next.next; while(slow!=fast){ slow=slow.next; fast=fast.next.next; } moveB=slow; moveA=headA; while(moveA!=moveB){ moveA=moveA.next; moveB=moveB.next; } lastA.next=null; return moveB; } }
Notes:
- If the two linked lists have no intersection at all, return
null
. - The linked lists must retain their original structure after the function returns.
- You may assume there are no cycles anywhere in the entire linked structure.
- Your code should preferably run in O(n) time and use only O(1) memory.