代码:
%% ------------------------------------------------------------------------ %% Output Info about this m-file fprintf(' *********************************************************** '); fprintf(' <DSP using MATLAB> Problem 8.33.2 '); banner(); %% ------------------------------------------------------------------------ % Digital Filter Specifications: wp = 0.45*pi; % digital passband freq in rad ws = 0.50*pi; % digital stopband freq in rad Rp = 0.5; % passband ripple in dB As = 60; % stopband attenuation in dB Ripple = 10 ^ (-Rp/20) % passband ripple in absolute Attn = 10 ^ (-As/20) % stopband attenuation in absolute % Analog prototype specifications: Inverse Mapping for frequencies T = 1; % set T = 1 Fs = 1/T; OmegaP = (2/T)*tan(wp/2); % Prewarp(Cutoff) prototype passband freq OmegaS = (2/T)*tan(ws/2); % Prewarp(cutoff) prototype stopband freq OmegaP/pi OmegaS/pi % --------------------------------------------------------------- % method 1: afd_chb1 function % --------------------------------------------------------------- % Analog Chebyshev-1 Prototype Filter Calculation: [cs, ds] = afd_chb1(OmegaP, OmegaS, Rp, As); % Calculation of second-order sections: fprintf(' ***** Cascade-form in s-plane: START ***** '); [CS, BS, AS] = sdir2cas(cs, ds); fprintf(' ***** Cascade-form in s-plane: END ***** '); % Calculation of Frequency Response: [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, pi/T); delta_w = 2*pi/1000; Rp_s = -(min(db_s(501:1:floor(OmegaP/delta_w)+501))); % Actual Passband Ripple fprintf(' Actual Passband Ripple is %.4f dB. ', Rp_s); As_s = -round(max(db_s(floor(OmegaS/delta_w)+501:1:1000))); % Min Stopband attenuation fprintf(' Min Stopband attenuation is %.4f dB. ', As_s); % Calculation of Impulse Response: [ha, x, t] = impulse(cs, ds); % Impulse Invariance Transformation: %[b, a] = imp_invr(cs, ds, T); % Bilinear Transformation [b, a] = bilinear(cs, ds, 1/T); [C, B, A] = dir2cas(b, a); % Calculation of Frequency Response: [db, mag, pha, grd, ww] = freqz_m(b, a); delta_w = 2*pi/1000; Rp = -(min(db(1:1:ceil(wp/delta_w)+1))); % Actual Passband Ripple fprintf(' Actual Passband Ripple is %.4f dB. ', Rp); As = -round(max(db(ceil(ws/delta_w)+1:1:501))); % Min Stopband attenuation fprintf(' Min Stopband attenuation is %.4f dB. ', As); %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Analog Chebyshev-1 lowpass') set(gcf,'Color','white'); M = 1; % Omega max subplot(2,2,1); plot(ww_s/pi, mag_s); grid on; %axis([-M, M, 0, 1.2]); xlabel(' Analog frequency in pi units'); ylabel('|H|'); title('Magnitude in Absolute'); set(gca, 'XTickMode', 'manual', 'XTick', [-0.6366, -0.5437, 0, 0.5437, 0.6366]); set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.001, 0.5, 0.9441, 1]); subplot(2,2,2); plot(ww_s/pi, db_s); grid on; %axis([0, M, -50, 10]); xlabel('Analog frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB '); set(gca, 'XTickMode', 'manual', 'XTick', [-0.6366, -0.5437, 0, 0.5437, 0.6366]); set(gca, 'YTickMode', 'manual', 'YTick', [-65, -60, -1, 0]); set(gca,'YTickLabelMode','manual','YTickLabel',[ '65'; '60';'1 ';' 0']); subplot(2,2,3); plot(ww_s/pi, pha_s/pi); grid on; axis([-M, M, -1.2, 1.2]); xlabel('Analog frequency in pi nuits'); ylabel('radians'); title('Phase Response'); set(gca, 'XTickMode', 'manual', 'XTick', [-0.6366, -0.5437, 0, 0.5437, 0.6366]); set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]); subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response'); figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Digital Chebyshev-1 lowpass by afd_chb1 function') set(gcf,'Color','white'); M = 2; % Omega max subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on; xlabel('Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, 1.5, 1.55, M]); set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.001, 0.5, 0.9441, 1]); subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on; xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on; xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB '); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-65, -60, -1, 0]); set(gca,'YTickLabelMode','manual','YTickLabel',['65'; '60';' 1';' 0']); subplot(2,2,4); plot(ww/pi, grd); grid on; axis([0, M, 0, 200]); xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, M]); %set(gca, 'YTickMode', 'manual', 'YTick', [0:20:100]); figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Pole-Zero Plot') set(gcf,'Color','white'); zplane(b,a); title(sprintf('Pole-Zero Plot')); %pzplotz(b,a); % --------------------------------------------------------------- % method 2: MATLAB cheby1 function % --------------------------------------------------------------- % Analog Prototype Order Calculations: ep = sqrt(10^(Rp/10)-1); % Passband Ripple Factor A = 10^(As/20); % Stopband Attenuation Factor OmegaC = OmegaP; % Analog Chebyshev-1 prototype cutoff freq OmegaR = OmegaS/OmegaP; % Analog prototype Transition ratio g = sqrt(A*A-1)/ep; % Analog prototype Intermediate cal N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1))); fprintf(' ********** Chebyshev-I Filter Order = %3.0f ', N) % Digital Chebyshev-1 Filter Design: wn = wp/pi; % Digital Chebyshev-1 cutoff freq in pi units [b, a] = cheby1(N, Rp, wn); [C, B, A] = dir2cas(b, a) % Calculation of Frequency Response: [db, mag, pha, grd, ww] = freqz_m(b, a); delta_w = 2*pi/1000; Rp = -(min(db(1:1:ceil(wp/delta_w)+1))); % Actual Passband Ripple fprintf(' Actual Passband Ripple is %.4f dB. ', Rp); As = -round(max(db(ceil(ws/delta_w)+1:1:501))); % Min Stopband attenuation fprintf(' Min Stopband attenuation is %.4f dB. ', As); %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Digital Chebyshev-1 lowpass by cheby1 function') set(gcf,'Color','white'); M = 2; % Omega max subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on; xlabel('Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]); set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.001, 0.9441, 1]); subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on; xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]); subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on; xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB '); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]); set(gca, 'YTickMode', 'manual', 'YTick', [-70, -60, -15, -1, 0]); set(gca,'YTickLabelMode','manual','YTickLabel',['70'; '60';'15';' 1';' 0']); subplot(2,2,4); plot(ww/pi, grd); axis([0, M, 0, 150]); grid on; xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay'); set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]); set(gca, 'YTickMode', 'manual', 'YTick', [0:20:100]); % ---------------------------------------------- % Calculation of Impulse Response % ---------------------------------------------- figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Imp & Freq Response') set(gcf,'Color','white'); t = [0:0.5:160]; subplot(2,1,1); impulse(cs,ds,t); grid on; % Impulse response of the analog filter axis([0,160,-0.4,0.5]);hold on n = [0:1:160/T]; hn = filter(b,a,impseq(0,0,160/T)); % Impulse response of the digital filter stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%f',T)); hold off % Calculation of Frequency Response: [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T); % Analog frequency s-domain [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a); % Digital z-domain %% ----------------------------------------------------------------- %% Plot %% ----------------------------------------------------------------- subplot(2,1,2); plot(wws/(2*pi), mags*Fs, 'b', wwz/(2*pi)*Fs, magz,'r'); grid on; xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); text(-0.3,0.15,'Analog filter', 'Color', 'b'); text(0.4,0.55,'Digital filter', 'Color', 'r');
运行结果:
这里只放chebyshev-1型,第2小题
通带、阻带绝对指标,以及模拟滤波器频带截止频率,
模拟chebyshev-1型低通滤波器,幅度谱、相位谱和脉冲响应
采用afd_chb1函数(双线性变换法),得到数字chebyshev-1低通滤波器,其幅度谱、相位谱和群延迟响应
采用MATLAB自带cheby1函数,得到数字低通,幅度谱、相位谱和群延迟响应
以下三图是模拟低通、两函数得到数字低通,各自最低阻带衰减对比,可见,MATLAB自带的cheby1函数设计的数字低通可以达到70dB。
至于其它的代码这里不放了,步骤类似,最后给出设计滤波器阶数和阻带衰减对比结果