• 《DSP using MATLAB》Problem 8.33


    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.33.2 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    % Digital Filter Specifications:
    wp = 0.45*pi;                 % digital passband freq in rad
    ws = 0.50*pi;                 % digital stopband freq in rad
    Rp = 0.5;                     % passband ripple in dB
    As = 60;                      % stopband attenuation in dB
    
    Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
    Attn = 10 ^ (-As/20)             % stopband attenuation in absolute
    
    % Analog prototype specifications: Inverse Mapping for frequencies
    T = 1;                           % set T = 1
    Fs = 1/T;
    OmegaP = (2/T)*tan(wp/2);        % Prewarp(Cutoff) prototype passband freq
    OmegaS = (2/T)*tan(ws/2);        % Prewarp(cutoff) prototype stopband freq
    
    OmegaP/pi
    OmegaS/pi
    
    % ---------------------------------------------------------------
    %      method 1:   afd_chb1 function
    % ---------------------------------------------------------------
    % Analog Chebyshev-1 Prototype Filter Calculation:
    [cs, ds] = afd_chb1(OmegaP, OmegaS, Rp, As);
    
    % Calculation of second-order sections:
    fprintf('
    ***** Cascade-form in s-plane: START *****
    ');
    [CS, BS, AS] = sdir2cas(cs, ds);
    fprintf('
    ***** Cascade-form in s-plane: END *****
    ');
    
    % Calculation of Frequency Response:
    [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, pi/T);
    
    delta_w = 2*pi/1000;
    Rp_s = -(min(db_s(501:1:floor(OmegaP/delta_w)+501)));                       % Actual Passband Ripple
    
    fprintf('
    Actual Passband Ripple is %.4f dB.
    ', Rp_s);
    
    As_s = -round(max(db_s(floor(OmegaS/delta_w)+501:1:1000)));                % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f dB.
    ', As_s);
    
    % Calculation of Impulse Response:
    [ha, x, t] = impulse(cs, ds);
    
    
    % Impulse Invariance Transformation:
    %[b, a] = imp_invr(cs, ds, T); 
    
    % Bilinear Transformation
    [b, a] = bilinear(cs, ds, 1/T);
    [C, B, A] = dir2cas(b, a);
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    delta_w = 2*pi/1000;
    Rp = -(min(db(1:1:ceil(wp/delta_w)+1)));                       % Actual Passband Ripple
    
    fprintf('
    Actual Passband Ripple is %.4f dB.
    ', Rp);
    
    As = -round(max(db(ceil(ws/delta_w)+1:1:501)));                % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f dB.
    ', As);
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Analog Chebyshev-1 lowpass')
    set(gcf,'Color','white'); 
    M = 1;                          % Omega max
    
    subplot(2,2,1); plot(ww_s/pi, mag_s);  grid on; %axis([-M, M, 0, 1.2]);
    xlabel(' Analog frequency in pi units'); ylabel('|H|'); title('Magnitude in Absolute');
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.6366, -0.5437, 0, 0.5437, 0.6366]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.001, 0.5, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww_s/pi, db_s);  grid on; %axis([0, M, -50, 10]);
    xlabel('Analog frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.6366, -0.5437, 0, 0.5437, 0.6366]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-65, -60, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',[ '65'; '60';'1 ';' 0']);
    
    subplot(2,2,3); plot(ww_s/pi, pha_s/pi);  grid on; axis([-M, M, -1.2, 1.2]);
    xlabel('Analog frequency in pi nuits'); ylabel('radians'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.6366, -0.5437, 0, 0.5437, 0.6366]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);
    
    subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); 
    xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Digital Chebyshev-1 lowpass by afd_chb1 function')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, 1.5, 1.55, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.001, 0.5, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-65, -60, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['65'; '60';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; axis([0, M, 0, 200]);
    xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1.0, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:20:100]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    
    % ---------------------------------------------------------------
    %           method 2:  MATLAB cheby1 function
    % ---------------------------------------------------------------
    
    % Analog Prototype Order Calculations:
    ep = sqrt(10^(Rp/10)-1);           % Passband Ripple Factor
    A = 10^(As/20);                    % Stopband Attenuation Factor
    OmegaC = OmegaP;                   % Analog Chebyshev-1 prototype cutoff freq
    OmegaR = OmegaS/OmegaP;            % Analog prototype Transition ratio
    g = sqrt(A*A-1)/ep;                % Analog prototype Intermediate cal
    
    N  = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));
    fprintf('
    
     ********** Chebyshev-I Filter Order = %3.0f  
    ', N)
    
    % Digital Chebyshev-1 Filter Design:
    wn = wp/pi;                        % Digital Chebyshev-1 cutoff freq in pi units
    
    [b, a] = cheby1(N, Rp, wn); [C, B, A] = dir2cas(b, a)
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    delta_w = 2*pi/1000;
    Rp = -(min(db(1:1:ceil(wp/delta_w)+1)));                       % Actual Passband Ripple
    
    fprintf('
    Actual Passband Ripple is %.4f dB.
    ', Rp);
    
    As = -round(max(db(ceil(ws/delta_w)+1:1:501)));                % Min Stopband attenuation
    fprintf('
    Min Stopband attenuation is %.4f dB.
    ', As);
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Digital Chebyshev-1 lowpass by cheby1 function')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.001, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-70, -60, -15, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['70'; '60';'15';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); axis([0, M, 0, 150]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.45, 0.50, 1, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0:20:100]);
    
    
    
    % ----------------------------------------------
    %       Calculation of Impulse Response
    % ----------------------------------------------
    figure('NumberTitle', 'off', 'Name', 'Problem 8.33.2 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0:0.5:160]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0,160,-0.4,0.5]);hold on
    
    n = [0:1:160/T]; hn = filter(b,a,impseq(0,0,160/T));           % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%f',T));
    hold off
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);               % Digital  z-domain
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    subplot(2,1,2); plot(wws/(2*pi), mags*Fs, 'b',  wwz/(2*pi)*Fs, magz,'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(-0.3,0.15,'Analog filter', 'Color', 'b'); text(0.4,0.55,'Digital filter', 'Color', 'r');
    

      运行结果:

           这里只放chebyshev-1型,第2小题

           通带、阻带绝对指标,以及模拟滤波器频带截止频率,

            模拟chebyshev-1型低通滤波器,幅度谱、相位谱和脉冲响应

            采用afd_chb1函数(双线性变换法),得到数字chebyshev-1低通滤波器,其幅度谱、相位谱和群延迟响应

            采用MATLAB自带cheby1函数,得到数字低通,幅度谱、相位谱和群延迟响应

            以下三图是模拟低通、两函数得到数字低通,各自最低阻带衰减对比,可见,MATLAB自带的cheby1函数设计的数字低通可以达到70dB。

            至于其它的代码这里不放了,步骤类似,最后给出设计滤波器阶数和阻带衰减对比结果

  • 相关阅读:
    android中提示&对话框----ProgressDialog&DatePickerDialog &TimePickerDialog&PopupWindow
    android中提示&对话框----AlertDialog
    android中提示&对话框----Notification
    android中提示&对话框----Toast
    android中与Adapter相关的控件----ViewFlipper
    android中与Adapter相关的控件----ExpandableListView
    android中与Adapter相关的控件----Spinner&AutoCompleteTextView
    android中与Adapter相关的控件----GridView
    android中与Adapter相关的控件----ListView
    android中Adapter适配器的讲解
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11650499.html
Copyright © 2020-2023  润新知