• 《DSP using MATLAB》Problem 8.31


    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.31 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    Fp = 3.2;                    % analog passband freq in kHz   6.4 kpi
    Fs = 3.8;                    % analog stopband freq in kHz   7.6 kpi
    fs = 8;                      % sampling rate in kHz         16.0 kpi
    
    % -------------------------------
    %       Ω=(2/T)tan(ω/2)  
    %       ω=2*[atan(ΩT/2)]
    % Digital Filter Specifications:
    % -------------------------------
    wp = 2*pi*Fp/fs                 % digital passband freq in rad     0.8pi
    %wp = Fp;
    ws = 2*pi*Fs/fs                 % digital stopband freq in rad     0.95pi
    %ws = Fs;
    Rp = 0.5;                        % passband ripple in dB
    As = 45;                         % stopband attenuation in dB
    
    Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
    Attn = 10 ^ (-As/20)             % stopband attenuation in absolute
    
    % Analog prototype specifications: Inverse Mapping for frequencies
    T = 1/8000;                           % set T = 1
    %fs = 1/T;
    OmegaP = (2/T)*tan(wp/2)        % prototype passband freq      1.9593pi     15675pi
    OmegaS = (2/T)*tan(ws/2)        % prototype stopband freq      8.089pi      64712pi
    
    % Analog Chebyshev-1 Prototype Filter Calculation:
    [cs, ds] = afd_chb1(OmegaP, OmegaS, Rp, As);
    
    % Calculation of second-order sections:
    fprintf('
    ***** Cascade-form in s-plane: START *****
    ');
    [CS, BS, AS] = sdir2cas(cs, ds)
    fprintf('
    ***** Cascade-form in s-plane: END *****
    ');
    
    % Calculation of Frequency Response:
    [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 8*pi/T);
    
    % --------------------------------------------------------------------
    %   find exact band-edge frequencies for the given dB specifications
    % --------------------------------------------------------------------
    [diff_to_45dB, ind] = min(abs(db_s+45))
    db_s(ind-3 : ind+3)                                     % magnitude response, dB 
    
    ww_s(ind)/(pi)          % analog frequency in kpi units
    %ww_s(ind)/(2*pi)        % analog frequency in Hz units 
    
    [sA,index] = sort(abs(db_s+45));
    AA_dB = db_s(index(1:8))
    AB_rad = ww_s(index(1:8))/(pi)
    AC_Hz = ww_s(index(1:8))/(2*pi)
    % -------------------------------------------------------------------
    
    
    % Calculation of Impulse Response:
    [ha, x, t] = impulse(cs, ds);
    
    
    % Impulse Invariance Transformation:
    %[b, a] = imp_invr(cs, ds, T); 
    
    % Bilinear Transformation
    [b, a] = bilinear(cs, ds, 1/T)
    [C, B, A] = dir2cas(b, a)
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    % --------------------------------------------------------------------
    %   find exact band-edge frequencies for the given dB specifications
    % --------------------------------------------------------------------
    [diff_to_45dB, ind] = min(abs(db+45))
    db(ind-3 : ind+3)                                     % magnitude response, dB 
    
    ww(ind)/(pi)
    
    (2/T)*tan(ww(ind)/2)/pi        
    
    [sA,index] = sort(abs(db+45));
    AA_dB = db(index(1:8))'
    AB_rad = ww(index(1:8))'/pi
    AC_Hz = (2/T)*tan(ww(index(1:8))'/2)/pi
    % -------------------------------------------------------------------
    
    
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    figure('NumberTitle', 'off', 'Name', 'Problem 8.31 Analog Chebyshev-I lowpass')
    set(gcf,'Color','white'); 
    M = 1.0;                          % Omega max
    
    subplot(2,2,1); plot(ww_s/pi, mag_s);  grid on; %axis([-10, 10, 0, 1.2]);
    xlabel(' Analog frequency in piHz units'); ylabel('|H|'); title('Magnitude in Absolute');
    % set(gca, 'XTickMode', 'manual', 'XTick', [-8.089, -1.9593, 0, 1.9593, 8.089]);  % T = 1
    set(gca, 'XTickMode', 'manual', 'XTick', [-80000, -64712, -15675, 0, 15675, 64712, 80000]);  % T = 1/8000 
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.006, 0.94, 1.0, 1.5]);
    
    subplot(2,2,2); plot(ww_s/pi, db_s);  grid on; %axis([0, M, -50, 10]);
    xlabel('Analog frequency in piHz units'); ylabel('Decibels'); title('Magnitude in dB ');
    % set(gca, 'XTickMode', 'manual', 'XTick', [-8.089, -1.9593, 0, 1.9593, 5.7, 8.089]);        % T = 1
    set(gca, 'XTickMode', 'manual', 'XTick', [-80000, -64712, -15675, 0, 15675, 45696, 64712, 80000]);  % T = 1/8000 
    set(gca, 'YTickMode', 'manual', 'YTick', [-45, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['45';' 1';' 0']);
    
    subplot(2,2,3); plot(ww_s/pi, pha_s/pi);  grid on; %axis([-10, 10, -1.2, 1.2]);
    xlabel('Analog frequency in piHz nuits'); ylabel('radians'); title('Phase Response');
    % set(gca, 'XTickMode', 'manual', 'XTick', [-8.089, -1.9593, 0, 1.9593, 8.089]);    % T = 1
    set(gca, 'XTickMode', 'manual', 'XTick', [-80000, -64712, -15675, 0, 15675, 45696, 64712, 80000]);  % T = 1/8000 
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);
    
    subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); 
    xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');
    
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.31 Digital Chebyshev-I lowpass')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
    xlabel(' Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0056, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -80, 10]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.93, 0.95, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-70, -45, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['70';'45';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.31 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    % ----------------------------------------------
    %       Calculation of Impulse Response
    % ----------------------------------------------
    figure('NumberTitle', 'off', 'Name', 'Problem 8.31 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0: 0.000005 : 8*0.0001]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0, 8*0.0001, -1.5*10000, 2.0*10000]);hold on
    
    n = [0:1:7*0.0001/T]; hn = filter(b,a,impseq(0,0,7*0.0001/T));           % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses T=%2d',T));
    hold off
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 8*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);                  % Digital  z-domain
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    subplot(2,1,2); plot(wws/(2*pi), mags/T, 'b+', wwz/(2*pi*T), magz, 'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(-0.8,0.15,'Analog filter', 'Color', 'b'); text(0.6,1.05,'Digital filter', 'Color', 'r');
    
    
    
    %% -----------------------------------------------------------------------
    %%                   MATLAB cheby1 function
    %% -----------------------------------------------------------------------
    
    % Analog Prototype Order Calculations:
    ep = sqrt(10^(Rp/10)-1);           % Passband Ripple Factor
    A = 10^(As/20);                    % Stopband Attenuation Factor
    OmegaC = OmegaP;                   % Analog Chebyshev-1 prototype cutoff freq
    OmegaR = OmegaS/OmegaP;            % Analog prototype Transition ratio
    g = sqrt(A*A-1)/ep;                % Analog prototype Intermediate cal
    
    N  = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));
    fprintf('
    
     ********** Chebyshev-I Filter Order = %3.0f  
    ', N)
    
    % Digital Chebyshev-1 Filter Design:
    wn = wp/pi;                        % Digital Chebyshev-1 cutoff freq in pi units
    
    [b, a] = cheby1(N, Rp, wn)
    [C, B, A] = dir2cas(b, a)
    
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    % --------------------------------------------------------------------
    %   find exact band-edge frequencies for the given dB specifications
    % --------------------------------------------------------------------
    [diff_to_45dB, ind] = min(abs(db+45))
    db(ind-3 : ind+3)                                     % magnitude response, dB 
    
    ww(ind)/(pi)
    
    (2/T)*tan(ww(ind)/2)/pi        
    
    [sA,index] = sort(abs(db+45));
    AA_dB = db(index(1:8))'
    AB_rad = ww(index(1:8))'/pi
    AC_Hz = (2/T)*tan(ww(index(1:8))'/2)/pi
    % -------------------------------------------------------------------	
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.31 Digital Chebyshev-I lowpass by cheby1 function')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0056, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.93, 0.95, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-60, -45, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['60';'45';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.8, 0.95, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.31 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    % ----------------------------------------------
    %       Calculation of Impulse Response
    % ----------------------------------------------
    figure('NumberTitle', 'off', 'Name', 'Problem 8.31 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0: 0.000005 : 8*0.0001]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0, 8*0.0001, -1.5*10000, 2.0*10000]);hold on
    
    n = [0:1:7*0.0001/T]; hn = filter(b,a,impseq(0,0,7*0.0001/T));           % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses T=%2d',T));
    hold off
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 8*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);                  % Digital  z-domain
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    subplot(2,1,2); plot(wws/(2*pi), mags/T, 'b+', wwz/(2*pi*T), magz, 'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(-0.8,0.15,'Analog filter', 'Color', 'b'); text(0.6,1.05,'Digital filter', 'Color', 'r');
    

      运行结果:

           这里放上T=1/8000sec的结果。

           模拟chebyshev-1型低通,幅度谱、相位谱和脉冲响应

            采用双线性变换法,得到数字chebyshev-1型低通滤波器,幅度谱、相位谱和群延迟响应

             采用MATLAB自带cheby1函数得到的数字低通,其幅度谱、相位谱和群延迟

            cheby1函数得到的数字低通,和相应的模拟原型的脉冲响应,二者形态不同。

  • 相关阅读:
    注意身体
    用生命去战斗
    来到华师,一切清零
    linux fork()函数 转载~~~~
    小端大端
    位域
    内存泄漏(memory leak)和内存溢出
    stack,heap的区别
    内存管理简便复习总结
    虚函数&&虚继承
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11618675.html
Copyright © 2020-2023  润新知