• 《DSP using MATLAB》Problem 8.30


            10月1日,新中国70周岁生日,上午观看了盛大的庆祝仪式,整齐的方阵,先进的武器,尊敬的先辈英雄,欢乐的人们,愿我们的

    国家越来越好,人民生活越来越好。

           接着做题。

    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.30 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    % -----------------------------------
    %          Ω=(2/T)tan(ω/2)  
    %          ω=2*[atan(ΩT/2)]
    %    Digital Filter Specifications:
    % -----------------------------------
    wp = 0.4*pi;                     % digital passband freq in rad
    ws = 0.6*pi;                     % digital stopband freq in rad
    Rp = 0.5;                        % passband ripple in dB
    As = 50;                         % stopband attenuation in dB
    
    Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
    Attn = 10 ^ (-As/20)             % stopband attenuation in absolute
    
    % Analog prototype specifications: Inverse Mapping for frequencies
    T = 2;                           % set T = 1
    Fs = 1/T;
    OmegaP = (2/T)*tan(wp/2);        % prototype passband freq
    OmegaS = (2/T)*tan(ws/2);        % prototype stopband freq
    
    % Analog Butterworth Prototype Filter Calculation:
    [cs, ds] = afd_butt(OmegaP, OmegaS, Rp, As);
    
    % Calculation of second-order sections:
    fprintf('
    ***** Cascade-form in s-plane: START *****
    ');
    [CS, BS, AS] = sdir2cas(cs, ds);
    fprintf('
    ***** Cascade-form in s-plane: END *****
    ');
    
    % Calculation of Frequency Response:
    [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 2*pi/T);
    
    
    % --------------------------------------------------------------------
    %   find exact band-edge frequencies for the given dB specifications
    % --------------------------------------------------------------------
    %ind = find( abs(ceil(db_s))-50 == 0 )
    [diff_to_50dB, ind] = min(abs(db_s+50))
    db_s(ind-3 : ind+3)                                     % magnitude response, dB 
    
    ww_s(ind)/(pi)          % analog frequency in kpi units
    %ww_s(ind)/(2*pi)        % analog frequency in Hz units 
    
    [sA,index] = sort(abs(db_s+50));
    AA_dB = db_s(index(1:8))
    AB_rad = ww_s(index(1:8))/(pi)
    AC_Hz = ww_s(index(1:8))/(2*pi)
    % -------------------------------------------------------------------
    
    
    % Calculation of Impulse Response:
    [ha, x, t] = impulse(cs, ds);
    
    
    % Impulse Invariance Transformation:
    %[b, a] = imp_invr(cs, ds, T); 
    
    % Bilinear Transformation
    [b, a] = bilinear(cs, ds, Fs);
    [C, B, A] = dir2cas(b, a);
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    % --------------------------------------------------------------------
    %   find exact band-edge frequencies for the given dB specifications
    % --------------------------------------------------------------------
    %ind = find( abs(ceil(db))-50 == 0 )
    [diff_to_80dB, ind] = min(abs(db+50))
    db(ind-3 : ind+3)                                     % magnitude response, dB 
    
    ww(ind)/(pi)
    %ww(ind)*Fs/(2*pi)
    
    (2/T)*tan(ww(ind)/2)/pi        
    
    [sA,index] = sort(abs(db+50));
    AA_dB = db(index(1:8))'
    AB_rad = ww(index(1:8))'/pi
    AC_Hz = (2/T)*tan(ww(index(1:8))'/2)/pi
    % -------------------------------------------------------------------
    
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    figure('NumberTitle', 'off', 'Name', 'Problem 8.30 Analog Butterworth lowpass')
    set(gcf,'Color','white'); 
    M = 1;                          % Omega max
    
    subplot(2,2,1); plot(ww_s/pi, mag_s);  grid on; axis([-M, M, 0, 1.2]);
    xlabel(' Analog frequency in pi units'); ylabel('|H|'); title('Magnitude in Absolute');
    %set(gca, 'XTickMode', 'manual', 'XTick', [-0.876, -0.463, 0, 0.463, 0.876]);        % T=1
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.44, -0.23, 0, 0.23, 0.44]);     % T=2
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0032, 0.5, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww_s/pi, db_s);  grid on; axis([-M, M, -100, 10]);
    xlabel('Analog frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    %set(gca, 'XTickMode', 'manual', 'XTick', [-0.876, -0.463, 0, 0.463, 0.8591, 0.876]);        % T=1
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.44, -0.23, 0, 0.23, 0.4295, 0.44]);     % T=2
    set(gca, 'YTickMode', 'manual', 'YTick', [-90, -50, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['90';'50';' 1';' 0']);
    
    subplot(2,2,3); plot(ww_s/pi, pha_s/pi);  grid on; axis([-M, M, -1.2, 1.2]);
    xlabel('Analog frequency in pi nuits'); ylabel('radians'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [-OmegaS, -OmegaP, 0, OmegaP, OmegaS]/pi);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);
    
    subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); 
    xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.30 Digital Butterworth lowpass by afd_butt function')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    subplot(2,2,1); plot(ww/(pi), mag); axis([0, M, 0, 1.2]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0032, 0.5, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww/(pi), pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('Digital frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on;
    xlabel('Digital frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    %set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.594, 0.6, 1.0, M]);   % T=1
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.594, 0.6, 1.0, M]);   % T=2
    set(gca, 'YTickMode', 'manual', 'YTick', [-70, -50, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['70';'50';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('Digital frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.30 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    
    % ----------------------------------------------
    %       Calculation of Impulse Response
    % ----------------------------------------------
    figure('NumberTitle', 'off', 'Name', 'Problem 8.30 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0:0.5:60]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0,60,-0.3,0.5]);hold on
    
    n = [0:1:60/T]; hn = filter(b,a,impseq(0,0,60/T));           % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%f',T));
    hold off
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);               % Digital  z-domain
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    subplot(2,1,2); plot(wws/(2*pi), mags*Fs,'b+', wwz/(2*pi)*Fs, magz,'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(-0.3,0.15,'Analog filter', 'Color', 'b'); text(0.4,0.55,'Digital filter', 'Color', 'r');
    
    
    
    %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    %%              MATLAB  butter function
    %% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    % Analog Prototype Order Calculations:
    N  = ceil((log10((10^(Rp/10)-1)/(10^(As/10)-1)))/(2*log10(OmegaP/OmegaS)));
    fprintf('
    
     ********** Butterworth Filter Order = %3.0f  
    ', N)
    
    OmegaC = OmegaP/((10^(Rp/10)-1)^(1/(2*N)));       % Analog BW prototype cutoff freq
    wn = 2*atan((OmegaC*T)/2);                        % Digital BW cutoff freq
    
    % Digital Butterworth Filter Design:
    wn = wn/pi;                            % Digital Butterworth cutoff freq in pi units
    
    [b, a] = butter(N, wn); [C, B, A] = dir2cas(b, a)
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.30 Digital Butterworth lowpass by butter function')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    subplot(2,2,1); plot(ww/pi, mag); axis([0, M, 0, 1.2]); grid on;
    xlabel(' frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0032, 0.5, 0.9441, 1]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -100, 10]); grid on;
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-70, -50, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['70';'50';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.4, 0.6, 1.0, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.30 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    % ----------------------------------------------
    %       Calculation of Impulse Response
    % ----------------------------------------------
    figure('NumberTitle', 'off', 'Name', 'Problem 8.30 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0:0.5:60]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0,60,-0.3,0.5]);hold on
    
    n = [0:1:60/T]; hn = filter(b,a,impseq(0,0,60/T));           % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%f',T));
    hold off
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);               % Digital  z-domain
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    subplot(2,1,2); plot(wws/(2*pi), mags*Fs,'b+', wwz/(2*pi)*Fs, magz,'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(-0.3,0.15,'Analog filter', 'Color', 'b'); text(0.4,0.55,'Digital filter', 'Color', 'r');
    

      运行结果:

           非归一化Butterworth模拟原型低通滤波器,直接形式的系数,

            模拟低通串联形式的系数:

            用双线性变换法,转换成数字Butterworth低通,直接形式的系数如下

            数字低通串联形式系数

            模拟Butterworth低通原型滤波器的幅度谱、相位谱和脉冲响应

            双线性变换法,得到的数字Butterworth低通滤波器,起幅度谱、相位谱和群延迟响应

            数字低通系统函数的零极点图

            下图的上半部分,模拟低通和数字低通的脉冲响应对比,可以看出形态不一致。

            采用MATLAB自带的butter函数求取数字低通,其幅度谱、相位谱和群延迟。

            与上面afd_butt函数所得结果相比,相位谱和群延迟稍有不同。

            零极点图,也稍有不同,零点部分靠的更紧密。

             脉冲响应,与上一种方法对比,结果一样,看不出区别。

  • 相关阅读:
    The IBM Blockchain Platform: Develop pre-requisites
    分布式账本简介
    MAC快捷键
    js跳转方法整理与自动刷新
    解决Excel打开UTF-8编码CSV文件乱码的问题
    C#代码实现邮箱验证C#中及一些常用的正则表达式
    php大小写转换函数
    PHP empty()函数使用需要注意
    关于网站调用在线翻译api实现翻译功能
    关于淘宝店铺装修弹出层popup的记录
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11616244.html
Copyright © 2020-2023  润新知