• 《DSP using MATLAB》Problem 8.27


            7月底,又一个夏天,又一个火热的夏天,来到火炉城武汉,天天高温橙色预警,到今天已有二十多天。

            先看看住的地方

            下雨的时候是这样的

            接着做题

    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.27 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    Fp =  100;                    % analog passband freq in Hz
    Fs =  150;                    % analog stopband freq in Hz
    fs = 1000;                    % sampling rate in Hz
    
    % -------------------------------
    %       ω = ΩT = 2πF/fs
    % Digital Filter Specifications:
    % -------------------------------
    wp = 2*pi*Fp/fs;                 % digital passband freq in rad/sec
    %wp = Fp;
    ws = 2*pi*Fs/fs;                 % digital stopband freq in rad/sec
    %ws = Fs;
    Rp = 1.0;                        % passband ripple in dB
    As = 30;                         % stopband attenuation in dB
    
    Ripple = 10 ^ (-Rp/20)           % passband ripple in absolute
    Attn = 10 ^ (-As/20)             % stopband attenuation in absolute
    
    % Analog prototype specifications: Inverse Mapping for frequencies
    T = 1/fs;                       % set T = 1
    OmegaP = wp/T;               % prototype passband freq
    OmegaS = ws/T;               % prototype stopband freq
    
    % Analog Butterworth Prototype Filter Calculation:
    [cs, ds] = afd_butt(OmegaP, OmegaS, Rp, As);
    
    % Calculation of second-order sections:
    fprintf('
    ***** Cascade-form in s-plane: START *****
    ');
    [CS, BS, AS] = sdir2cas(cs, ds)
    fprintf('
    ***** Cascade-form in s-plane: END *****
    ');
    
    % Calculation of Frequency Response:
    [db_s, mag_s, pha_s, ww_s] = freqs_m(cs, ds, 2*pi/T);
    
    % Calculation of Impulse Response:
    [ha, x, t] = impulse(cs, ds);
    
    % Match-z Transformation:
    %[b, a] = imp_invr(cs, ds, T)        % digital Num and Deno coefficients of H(z)
    [b, a] = mzt(cs, ds, T)            % digital Num and Deno coefficients of H(z)
    [C, B, A] = dir2par(b, a)
    
    % Calculation of Frequency Response:
    [db, mag, pha, grd, ww] = freqz_m(b, a);
    
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    figure('NumberTitle', 'off', 'Name', 'Problem 8.27 Analog Butterworth lowpass')
    set(gcf,'Color','white'); 
    M = 1.2;                          % Omega max
    
    subplot(2,2,1); plot(ww_s/pi*T, mag_s);  grid on; axis([-1.5, 1.5, 0, 1.1]);
    xlabel(' Analog frequency in kpi units'); ylabel('|H|'); title('Magnitude in Absolute');
    set(gca, 'XTickMode', 'manual', 'XTick', [-500, -300, 0, 200, 300, 1000]*T);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0316, 0.5, 0.8913, 1]);
    
    subplot(2,2,2); plot(ww_s/pi*T, db_s);  grid on; %axis([0, M, -50, 10]);
    xlabel('Analog frequency in kpi units'); ylabel('Decibels'); title('Magnitude in dB ');
    %set(gca, 'XTickMode', 'manual', 'XTick', [-0.3, -0.2, 0, 0.2, 0.3, 1.0]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-65, -30, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['65';'30';' 1';' 0']);
    
    subplot(2,2,3); plot(ww_s/pi*T, pha_s/pi);  grid on; axis([-1.010, 1.010, -1.2, 1.2]);
    xlabel('Analog frequency in kpi nuits'); ylabel('radians'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [-0.3, -0.2, 0, 0.2, 0.3, 1.0]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:0.5:1]);
    
    subplot(2,2,4); plot(t, ha); grid on; %axis([0, 30, -0.05, 0.25]); 
    xlabel('time in seconds'); ylabel('ha(t)'); title('Impulse Response');
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.27 Digital Butterworth lowpass')
    set(gcf,'Color','white'); 
    M = 2;                          % Omega max
    
    %%  Note  %%
    %%  Magnitude of H(z) * T
    %%  Note  %% 
    subplot(2,2,1); plot(ww/pi, mag/fs); axis([0, M, 0, 1.1]); grid on;
    xlabel(' frequency in pi units'); ylabel('|H|'); title('Magnitude Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [0, 0.0316, 0.5, 0.8913, 1]);
    
    subplot(2,2,2); plot(ww/pi, pha/pi); axis([0, M, -1.1, 1.1]); grid on;
    xlabel('frequency in pi nuits'); ylabel('radians in pi units'); title('Phase Response');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-1:1:1]);
    
    subplot(2,2,3); plot(ww/pi, db); axis([0, M, -120, 10]); grid on;
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude in dB ');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, 1.0, M]);
    set(gca, 'YTickMode', 'manual', 'YTick', [-70, -30, -1, 0]);
    set(gca,'YTickLabelMode','manual','YTickLabel',['70';'30';' 1';' 0']);
    
    subplot(2,2,4); plot(ww/pi, grd); grid on; %axis([0, M, 0, 35]);
    xlabel('frequency in pi units'); ylabel('Samples'); title('Group Delay');
    set(gca, 'XTickMode', 'manual', 'XTick', [0, 0.2, 0.3, 1.0, M]);
    %set(gca, 'YTickMode', 'manual', 'YTick', [0:5:35]);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.27 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot'));
    %pzplotz(b,a);
    
    
    
    
    % Calculation of Impulse Response:
    %[hs, xs, ts] = impulse(c, d);
    figure('NumberTitle', 'off', 'Name', 'Problem 8.27 Imp & Freq Response')
    set(gcf,'Color','white'); 
    t = [0:0.001:0.07]; subplot(2,1,1); impulse(cs,ds,t); grid on;   % Impulse response of the analog filter
    axis([0, 0.07, -100, 250]);hold on
    
    n = [0:1:0.07/T]; hn = filter(b,a,impseq(0,0,0.07/T));             % Impulse response of the digital filter
    stem(n*T,hn); xlabel('time in sec'); title (sprintf('Impulse Responses, T=%.3f',T));
    hold off
    
    
    
    %n = [0:1:29];
    %hz = impz(b, a, n);
    
    % Calculation of Frequency Response:
    [dbs, mags, phas, wws] = freqs_m(cs, ds, 2*pi/T);             % Analog frequency   s-domain  
    
    [dbz, magz, phaz, grdz, wwz] = freqz_m(b, a);                 % Digital  z-domain
     
    
    %% -----------------------------------------------------------------
    %%                             Plot
    %% -----------------------------------------------------------------  
    
    M = 1/T;                          % Omega max
    
    subplot(2,1,2); plot(wws/(2*pi),mags*fs,'b', wwz/(2*pi)*fs,magz,'r'); grid on;
    
    xlabel('frequency in Hz'); title('Magnitude Responses'); ylabel('Magnitude'); 
    
    text(1.4,.5,'Analog filter'); text(1.5,1.5,'Digital filter');
    

      运行结果:

            绝对指标

            非归一化Butterworth模拟低通直接形式的系数

            模拟低通串联形式的系数

            开始Match-z方法,转变成数字低通

            数字低通直接形式的系数

            数字低通的并联形式的系数

            模拟Butterworth低通的幅度谱、相位谱和脉冲响应

            经过Match-z方法得到的数字Butterworth低通的幅度谱、相位谱和群延迟

            数字Butterworth低通的零极点图

            模拟Butterworth低通、Match-z方法得到的数字Butterworth低通,二者的脉冲响应、幅度响应如下

            从上图可以看出,Match-z方法得到的数字低通,其脉冲响应与原模拟脉冲响应似乎有延迟的效果;其不像脉冲响应不变法那样,数字低通的

    脉冲响应是相应模拟低通脉冲响应的采样序列,即保持了脉冲响应形式不变。

  • 相关阅读:
    160628、利用Oracle rownum让表排序字段值连续
    160627、你想知道的关于JavaScript作用域的一切
    160624、Spark读取数据库(Mysql)的四种方式讲解
    160623、理解 Promise 的工作原理
    160622、详解JavaScript变量提升
    160621、Java注解教程及自定义注解
    详解JavaScript数组过滤相同元素的5种方法
    box-shadow
    Axios 中文说明
    一步一步学Vue(九) 路由元数据
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11366511.html
Copyright © 2020-2023  润新知