• 《DSP using MATLAB》Problem 8.10


    代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 8.10 
    
    ');
    banner();
    %% ------------------------------------------------------------------------
    
    %a0 = 0.90;
    %a0 = 0.95;
    a0 = 0.99;
    % digital iir 1st-order allpass filter
    b = [a0  1];
    a = [1  a0];
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.10 Pole-Zero Plot')
    set(gcf,'Color','white'); 
    zplane(b,a); 
    title(sprintf('Pole-Zero Plot, r=%.2f',a0));
    %pzplotz(b,a);
    
    [db, mag, pha, grd, w] = freqz_m(b, a);
    
    % ---------------------------------------------------------------------
    %  Choose the gain parameter of the filter, maximum gain is equal to 1 
    % ---------------------------------------------------------------------
    gain1=max(mag)                    % with poles
    K = 1
    [db, mag, pha, grd, w] = freqz_m(K*b, a);
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.10 IIR allpass filter')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); 
    set(gca,'YTickMode','manual','YTick',[-60,-30,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
    set(gca,'YTickMode','manual','YTick',[0,1.0]);
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    set(gca,'XTickMode','manual','XTick',[0,0.25,0.5,1,1.5,1.75,2]);
    %set(gca,'YTickMode','manual','YTick',[0,1.0]);
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.10 IIR allpass filter')
    set(gcf,'Color','white'); 
    plot(w/pi, -pha/w); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Delay in samples');
    
    
    
    % Impulse Response
    fprintf('
    ----------------------------------');
    fprintf('
    Partial fraction expansion method: 
    ');
    [R, p, c] = residuez(K*b,a)
    MR = (abs(R))'              % Residue  Magnitude
    AR = (angle(R))'/pi         % Residue  angles in pi units
    Mp = (abs(p))'              % pole  Magnitude
    Ap = (angle(p))'/pi         % pole  angles in pi units
    [delta, n] = impseq(0,0,50);
    h_chk = filter(K*b,a,delta);      % check sequences
    
    
    % ------------------------------------------------------------------------------------------------
    %                                gain parameter K  
    % ------------------------------------------------------------------------------------------------
    %h =  -0.2111 * ((-0.9) .^ n) + 1.1111 * delta;    %r=0.90
    %h =  -0.1026 * ((-0.95) .^ n) + 1.0526 * delta;    %r=0.95
    h =  -0.0201 * ((-0.99) .^ n) + 1.0101 * delta;    %r=0.99
    % ------------------------------------------------------------------------------------------------
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.10 IIR allpass filter, h(n) by filter and Inv-Z ')
    set(gcf,'Color','white'); 
    
    subplot(2,1,1); stem(n, h_chk); grid on; %axis([0 2 -60 10]); 
    xlabel('n'); ylabel('h\_chk'); title('Impulse Response sequences by filter');
    
    subplot(2,1,2); stem(n, h); grid on; %axis([0 1 -100 10]); 
    xlabel('n'); ylabel('h'); title('Impulse Response sequences by Inv-Z');
    
    
    [db, mag, pha, grd, w] = freqz_m(h, 1);
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 8.10 IIR filter, h(n) by Inv-Z ')
    set(gcf,'Color','white'); 
    
    subplot(2,2,1); plot(w/pi, db); grid on; axis([0 2 -60 10]); 
    set(gca,'YTickMode','manual','YTick',[-60,-30,0])
    set(gca,'YTickLabelMode','manual','YTickLabel',['60';'30';' 0']);
    set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
    xlabel('frequency in pi units'); ylabel('Decibels'); title('Magnitude Response in dB');
    
    subplot(2,2,3); plot(w/pi, mag); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Absolute'); title('Magnitude Response in absolute');
    set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
    set(gca,'YTickMode','manual','YTick',[0,1.0]);
    
    subplot(2,2,2); plot(w/pi, pha); grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Phase Response in Radians');
    
    subplot(2,2,4); plot(w/pi, grd*pi/180);  grid on; %axis([0 1 -100 10]); 
    xlabel('frequency in pi units'); ylabel('Rad'); title('Group Delay');
    set(gca,'XTickMode','manual','XTick',[0,0.25,1,1.75,2]);
    %set(gca,'YTickMode','manual','YTick',[0,1.0]);
    

      运行结果:

           第1、2小题的图这里不放了。

            相位延迟phase-delay为0.01时对应的a 的值0.9802

            此时1阶全通系统的留数、极点为

            系统零极点图

            该系统部分分式展开后,求逆z变换得脉冲响应

            由下图知,两种方法得到的系统脉冲响应h的幅度谱、相位谱、群延迟大致类似(ω=π时不同)。

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    LeetCode456. 132模式
    LeetCode455. 分发饼干
    LeetCode454. 四数相加 II
    LeetCode453. 最小移动次数使数组元素相等
    matchMedia 媒体查询结果
    异常捕获
    常用xpath选择器和css选择器总结
    python-爬虫中的extract()
    Python应用前景广阔,怎么学才能快速上手?
    Python 为什么要有 pass 语句?
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/11001129.html
Copyright © 2020-2023  润新知