随着移动终端的普及,很多应用都基于LBS功能,附近的某某(餐馆、银行、妹纸等等)。
基础数据中,一般保存了目标位置的经纬度;利用用户提供的经纬度,进行对比,从而获得是否在附近。
目标:
查找附近的XXX,由近到远返回结果,且结果中有与目标点的距离。
针对查找附近的XXX,提出两个方案,如下:
一、方案A:
=================================================================================================
抽象为球面两点距离的计算,即已知道球面上两点的经纬度;
点(纬度,经度),A($radLat1,$radLng1)、B($radLat2,$radLng2);
优点:通俗易懂,部署简单便捷
缺点:每次都会查询数据库,性能堪忧
1、推导
通过余弦定理以及弧度计算方法,最终推导出来的算式A为:
$s = acos(cos($radLat1)*cos($radLat2)*cos($radLng1-$radLng2)+sin($radLat1)*sin($radLat2))*$R; |
目前网上大多使用Google公开的距离计算公司,推导算式B为:
$s = 2*asin(sqrt(pow(sin(($radLat1-$radLat2) /2 ),2)+cos($radLat1)*cos($radLat2)*pow(sin(($radLng1-$radLng2) /2 ),2)))*$R; |
其中 :
$radLat1、$radLng1,$radLat2,$radLng2 为弧度
$R 为地球半径
2、通过测试两种算法,结果相同且都正确,但通过PHP代码测试,两点间距离,10W次性能对比,自行推导版本计算时长算式B较优,如下:
//算式A
0.56368780136108float(431)
0.57460689544678float(431)
0.59051203727722float(431)
//算式B
0.47404885292053float(431)
0.47808718681335float(431)
0.47946381568909float(431)
3、所以采用数学方法推导出的公式:
4、在实际应用中,需要从数据库中遍历取出符合条件,以及排序等操作,
将所有数据取出,然后通过PHP循环对比,筛选符合条件结果,显然性能低下;所以我们利用下Mysql存储函数来解决这个问题吧。
4.1、创建Mysql存储函数,并对经纬度字段建立索引
4.2、查询SQL
通过SQL,可设置距离以及排序;可搜索出符合条件的信息,以及有一个较好的排序
1 | SELECT *,latitude,longitude,GETDISTANCE(latitude,longitude,30.663262,104.071619) AS distance FROM mb_shop_ext where 1 HAVING distance<1000 ORDER BY distance ASC LIMIT 0,10 |
二、方案B
=================================================================================================
Geohash算法;geohash是一种地址编码,它能把二维的经纬度编码成一维的字符串。
比如,成都永丰立交的编码是wm3yr31d2524
优点:
1、利用一个字段,即可存储经纬度;搜索时,只需一条索引,效率较高
2、编码的前缀可以表示更大的区域,查找附近的,非常方便。 SQL中,LIKE ‘wm3yr3%’,即可查询附近的所有地点。
3、通过编码精度可模糊坐标、隐私保护等。
缺点: 距离和排序需二次运算(筛选结果中运行,其实挺快)
1、geohash的编码算法
成都永丰立交经纬度(30.63578,104.031601)
1.1、纬度范围(-90, 90)平分成两个区间(-90, 0)、(0, 90),如果目标纬度位于前一个区间,则编码为0,否则编码为1。
由于30.625265属于(0, 90),所以取编码为1。
然后再将(0, 90)分成 (0, 45), (45, 90)两个区间,而39.92324位于(0, 45),所以编码为0,
然后再将(0, 45)分成 (0, 22.5), (22.5, 45)两个区间,而39.92324位于(22.5, 45),所以编码为1,
依次类推可得永丰立交纬度编码为101010111001001000100101101010。
1.2、经度也用同样的算法,对(-180, 180)依次细分,(-180,0)、(0,180) 得出编码110010011111101001100000000000
1.3、合并经纬度编码,从高到低,先取一位经度,再取一位纬度;得出结果 111001001100011111101011100011000010110000010001010001000100
1.4、用0-9、b-z(去掉a, i, l, o)这32个字母进行base32编码,得到(30.63578,104.031601)的编码为wm3yr31d2524。
11100 10011 00011 11110 10111 00011 00001 01100 00010 00101 00010 00100 => wm3yr31d2524 十进制 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 base32 0 1 2 3 4 5 6 7 8 9 b c d e f g 十进制 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 base32 h j k m n p q r s t u v w x y z |
2、策略
1、在纬度和经度入库时,数据库新加一字段geohash,记录此点的geohash值
2、查找附近,利用 在SQL中 LIKE ‘wm3yr3%’;且此结果可缓存;在小区域内,不会因为改变经纬度,而重新数据库查询
3、查找出的有限结果,如需要求距离或者排序,可利用距离公式和二维数据排序;此时也是少量数据,会很快的。
四、总结
方案B的亮点在于:
1、搜索结果可缓存,重复使用,不会因为用户有小范围的移动,直接穿透数据库查询。
2、先缩小结果范围,再运算、排序,可提升性能。
254条记录,性能对比,
在实际应用场景中,方案B数据库搜索可内存缓存;且如数据量更大,方案B结果会更优。
方案A:
0.016560077667236
0.032402992248535
0.040318012237549
方案B
0.0079810619354248
0.0079669952392578
0.0064868927001953
五、其他
两种方案,根据应用场景以及负载情况合理选择,当然推荐方案B;
不管哪种方案,都记得,给列加上索引,利于数据库检索。