1、hive中控制并行执行的参数有如下几个:
$ bin/hive -e set | grep parall
hive.exec.parallel=false
hive.exec.parallel.thread.number=8
hive.stats.map.parallelism=1
其中:hive.exec.parallel=false、hive.exec.parallel.thread.number=8分别控制着hive并行执行的特性。hive.exec.parallel=false表示默认没有启用并行参数,可以将其设置为true,在执行作业前进行session级别设置;hive.exec.parallel.thread.number=8表示每个SQL执行并行的线程最大值,默认是8.
例如:
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=8;
select deptno,count(1) from emp group by deptno
union all
select deptno ,count(1) from emp group by deptno;
上面这个SQL的执行既可以启动并行,既可以同时执行不相关任务,而不需要一步一步顺序执行。
2、注意点:在hadoop上自行mapreduce任务数是有限制的,针对于集群资源充足的情况,并行自行可以很大程度提高性能,但如果集群资源本身就很紧张,那么并行并不能启动有效效果。
一个可能的hive作业设置为:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
set hive.exec.reducers.bytes.per.reducer=1000000000;
set hive.exec.reducers.max=256;
set hive.merge.mapfiles=true;
set hive.merge.mapredfiles =ture;
set hive.merge.size.per.task=256000000;
set hive.merge.smallfiles.avgsize=16000000;
set hive.exec.compress.intermediate=true;
set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec;
set hive.exec.compress.output=true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.GzipCodec;
set hive.exec.parallel=true;
set hive.exec.parallel.thread.number=8;
select deptno,count(1) from emp group by deptno
union all
select deptno ,count(1) from emp group by deptno;