• 计算阶乘n!末尾0的个数


    一、问题描述

      给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数。例如:

    • 5!=120,其末尾所含有的“0”的个数为1;
    • 10!= 3628800,其末尾所含有的“0”的个数为2;
    • 20!= 2432902008176640000,其末尾所含有的“0”的个数为4。

    二、算法分析

      此类问题很显然属于数学问题,一定要找到其中的本质规律才能得到正确的数学模型。

      两个大数字相乘,都可以拆分成多个质数相乘,而质数相乘结果尾数为0的,只可能是2*5。如果想到了这一点,那么就可以进一步想到:两个数相乘尾数0的个数其实就是依赖于2和5因子的个数。又因为每两个连续数字就会有一个因子2,个数非常充足,所以此时只需要关心5因子的个数就行了。

      对于一个正整数n来说,怎么计算n!中5因子的个数呢?我们可以把5的倍数都挑出来,即:

      令n! = (5*K) * (5*(K-1)) * (5*(K-2)) * ... * 5 * A,其中A就是不含5因子的数相乘结果,n = 5*K + r(0<= r <= 4)。假设f(n!)是计算阶乘n!尾数0的个数,而g(n!)是计算n!中5因子的个数,那么就会有如下公式:

      f(n!) = g(n!) = g(5^K * K! * A) = K + g(K!) = K + f(K!),其中K=n / 5(取整数)。

      很显然,当0 <= n <= 4时,f(n!)=0。结合这两个公式,就搞定了这个问题了。举几个例子来说:

    • f(5!) = 1 + f(1!) = 1
    • f(10!) = 2 + f(2!) = 2
    • f(20!) = 4 + f(4!) = 4
    • f(100!) = 20 + f(20!) = 20 + 4 + f(4!) = 24
    • f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249

    三、代码实现

       使用递归函数来做,非常的简单,直接套用公式即可:

    #include <iostream>
    using namespace std;
    
    int GetN_1(int n)
    {
        if (n < 5)
        {
            return 0;
        }
        else
        {
            return (n / 5 + GetN_1(n / 5));
        }
    }
    
    int main()
    {
        cout << GetN_1(1000) << endl;  // 输出249
    
        system("pause");
        return 0;
    }
  • 相关阅读:
    adb在查询数据库中遇到的问题及解决【1】
    软工人3月9日学习
    软工人3月8日学习
    Android studio ListView的数据更新问题
    python将爬取数据存储到文本文件
    Android studio ListView的数据更新问题
    Android studio ListView之checkbox错位问题解决
    阅读笔记《人月神话》1
    android打包生成apk
    线性布局和相对布局
  • 原文地址:https://www.cnblogs.com/kuliuheng/p/4102917.html
Copyright © 2020-2023  润新知