• HDU 4747 Mex (2013杭州网络赛1010题,线段树)


    Mex

    Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 623    Accepted Submission(s): 209


    Problem Description
    Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.

    Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
     
    Input
    The input contains at most 20 test cases.
    For each test case, the first line contains one integer n, denoting the length of sequence.
    The next line contains n non-integers separated by space, denoting the sequence.
    (1 <= n <= 200000, 0 <= ai <= 10^9)
    The input ends with n = 0.
     
    Output
    For each test case, output one line containing a integer denoting the answer.
     
    Sample Input
    3 0 1 3 5 1 0 2 0 1 0
     
    Sample Output
    5 24
    Hint
    For the first test case: mex(1,1)=1, mex(1,2)=2, mex(1,3)=2, mex(2,2)=0, mex(2,3)=0,mex(3,3)=0. 1 + 2 + 2 + 0 +0 +0 = 5.
     
    Source
     
    Recommend
    liuyiding
     

    题目定义了mex(i,j)表示,没有在i到j之间出现的最小的非负整数。

    求所有组合的i,j(i<=j)的和

    就是求mex(1,1) + mex(1,2)+....+mex(1,n)

    +mex(2,2) + mex(2,3) + ...mex(2,n)

    +mex(3,3) + mex(3,4)+...+mex(3,n)

    + mex(n,n)

    可以知道mex(i,i),mex(i,i+1)到mex(i,n)是递增的。

    首先很容易求得mex(1,1),mex(1,2)......mex(1,n)

    因为上述n个数是递增的。

    然后使用线段树维护,需要不断删除前面的数。

    比如删掉第一个数a[1]. 那么在下一个a[1]出现前的 大于a[1]的mex值都要变成a[1]

    因为是单调递增的,所以找到第一个 mex > a[1]的位置,到下一个a[1]出现位置,这个区间的值变成a[1].

    然后需要线段树实现区间修改和区间求和。

      1 /* ***********************************************
      2 Author        :kuangbin
      3 Created Time  :2013-9-17 21:15:02
      4 File Name     :G:2013ACM练习2013网络赛2013杭州网络赛1010.cpp
      5 ************************************************ */
      6 
      7 #pragma comment(linker, "/STACK:1024000000,1024000000")
      8 #include <stdio.h>
      9 #include <string.h>
     10 #include <iostream>
     11 #include <algorithm>
     12 #include <vector>
     13 #include <queue>
     14 #include <set>
     15 #include <map>
     16 #include <string>
     17 #include <math.h>
     18 #include <stdlib.h>
     19 #include <time.h>
     20 using namespace std;
     21 
     22 const int MAXN = 200010;
     23 struct Node
     24 {
     25     int l,r;
     26     long long sum;//区间和
     27     int mx;//最大值
     28     int lazy;//懒惰标记,表示赋值为相同的
     29 }segTree[MAXN*3];
     30 void push_up(int i)
     31 {
     32     if(segTree[i].l == segTree[i].r)return;
     33     segTree[i].sum = segTree[i<<1].sum + segTree[(i<<1)|1].sum;
     34     segTree[i].mx = max(segTree[i<<1].mx,segTree[(i<<1)|1].mx);
     35 }
     36 void Update_Same(int i,int v)
     37 {
     38     segTree[i].sum = (long long)v*(segTree[i].r - segTree[i].l + 1);
     39     segTree[i].mx = v;
     40     segTree[i].lazy = 1;
     41 }
     42 void push_down(int i)
     43 {
     44     if(segTree[i].l == segTree[i].r)return;
     45     if(segTree[i].lazy)
     46     {
     47         Update_Same(i<<1,segTree[i].mx);
     48         Update_Same((i<<1)|1,segTree[i].mx);
     49         segTree[i].lazy = 0;
     50     }
     51 }
     52 int mex[MAXN];
     53 void Build(int i,int l,int r)
     54 {
     55     segTree[i].l = l;
     56     segTree[i].r = r;
     57     segTree[i].lazy = 0;
     58     if(l == r)
     59     {
     60         segTree[i].mx = mex[l];
     61         segTree[i].sum = mex[l];
     62         return;
     63     }
     64     int mid = (l + r)>>1;
     65     Build(i<<1,l,mid);
     66     Build((i<<1)|1,mid+1,r);
     67     push_up(i);
     68 }
     69 //将区间[l,r]的数都修改为v
     70 void Update(int i,int l,int r,int v)
     71 {
     72     if(segTree[i].l == l && segTree[i].r == r)
     73     {
     74         Update_Same(i,v);
     75         return;
     76     }
     77     push_down(i);
     78     int mid = (segTree[i].l + segTree[i].r)>>1;
     79     if(r <= mid)
     80     {
     81         Update(i<<1,l,r,v);
     82     }
     83     else if(l > mid)
     84     {
     85         Update((i<<1)|1,l,r,v);
     86     }
     87     else
     88     {
     89         Update(i<<1,l,mid,v);
     90         Update((i<<1)|1,mid+1,r,v);
     91     }
     92     push_up(i);
     93 }
     94 //得到值>= v的最左边位置
     95 int Get(int i,int v)
     96 {
     97     if(segTree[i].l == segTree[i].r)
     98         return segTree[i].l;
     99     push_down(i);
    100     if(segTree[i<<1].mx > v)
    101         return Get(i<<1,v);
    102     else return Get((i<<1)|1,v);
    103 }
    104 int a[MAXN];
    105 map<int,int>mp;
    106 int next[MAXN];
    107 int main()
    108 {
    109     //freopen("in.txt","r",stdin);
    110     //freopen("out.txt","w",stdout);
    111     int n;
    112     while(scanf("%d",&n) && n)
    113     {
    114         for(int i = 1;i <= n;i++)
    115             scanf("%d",&a[i]);
    116         mp.clear();
    117         int tmp = 0;
    118         for(int i = 1;i <= n;i++)
    119         {
    120             mp[a[i]] = 1;
    121             while(mp.find(tmp) != mp.end())tmp++;
    122             mex[i] = tmp;
    123         }
    124         mp.clear();
    125         for(int i = n;i >= 1;i--)
    126         {
    127             if(mp.find(a[i]) == mp.end())next[i] = n+1;
    128             else next[i] = mp[a[i]];
    129             mp[a[i]] = i;
    130         }
    131         Build(1,1,n);
    132         long long sum = 0;
    133         for(int i = 1;i <= n;i++)
    134         {
    135             sum += segTree[1].sum;
    136             if(segTree[1].mx > a[i])
    137             {
    138                 int l = Get(1,a[i]);
    139                 int r = next[i];
    140                 if(l < r)
    141                     Update(1,l,r-1,a[i]);
    142             }
    143             Update(1,i,i,0);
    144         }
    145         printf("%I64d
    ",sum);
    146 
    147     }
    148     return 0;
    149 }
  • 相关阅读:
    贝叶斯推断祭
    libstdc和glibc的一些共享库问题
    nf_conntrack之解决方案
    Too many open files 问题
    Centos系统 上下文切换的检查思路
    GPS坐标转大地坐标
    【转】关于IAP与APP互相跳转的实现
    stm32定时器计数功能
    C库函数——字符串转数字整理
    【转】sscanf函数用法实例
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3327674.html
Copyright © 2020-2023  润新知