Mex
Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 623 Accepted Submission(s): 209
Problem Description
Mex is a function on a set of integers, which is universally used for impartial game theorem. For a non-negative integer set S, mex(S) is defined as the least non-negative integer which is not appeared in S. Now our problem is about mex function on a sequence.
Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
Consider a sequence of non-negative integers {ai}, we define mex(L,R) as the least non-negative integer which is not appeared in the continuous subsequence from aL to aR, inclusive. Now we want to calculate the sum of mex(L,R) for all 1 <= L <= R <= n.
Input
The input contains at most 20 test cases.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
For each test case, the first line contains one integer n, denoting the length of sequence.
The next line contains n non-integers separated by space, denoting the sequence.
(1 <= n <= 200000, 0 <= ai <= 10^9)
The input ends with n = 0.
Output
For each test case, output one line containing a integer denoting the answer.
Sample Input
3
0 1 3
5
1 0 2 0 1
0
Sample Output
5
24
Hint
For the first test case:
mex(1,1)=1, mex(1,2)=2, mex(1,3)=2, mex(2,2)=0, mex(2,3)=0,mex(3,3)=0.
1 + 2 + 2 + 0 +0 +0 = 5.
Source
Recommend
liuyiding
题目定义了mex(i,j)表示,没有在i到j之间出现的最小的非负整数。
求所有组合的i,j(i<=j)的和
就是求mex(1,1) + mex(1,2)+....+mex(1,n)
+mex(2,2) + mex(2,3) + ...mex(2,n)
+mex(3,3) + mex(3,4)+...+mex(3,n)
+ mex(n,n)
可以知道mex(i,i),mex(i,i+1)到mex(i,n)是递增的。
首先很容易求得mex(1,1),mex(1,2)......mex(1,n)
因为上述n个数是递增的。
然后使用线段树维护,需要不断删除前面的数。
比如删掉第一个数a[1]. 那么在下一个a[1]出现前的 大于a[1]的mex值都要变成a[1]
因为是单调递增的,所以找到第一个 mex > a[1]的位置,到下一个a[1]出现位置,这个区间的值变成a[1].
然后需要线段树实现区间修改和区间求和。
1 /* *********************************************** 2 Author :kuangbin 3 Created Time :2013-9-17 21:15:02 4 File Name :G:2013ACM练习2013网络赛2013杭州网络赛1010.cpp 5 ************************************************ */ 6 7 #pragma comment(linker, "/STACK:1024000000,1024000000") 8 #include <stdio.h> 9 #include <string.h> 10 #include <iostream> 11 #include <algorithm> 12 #include <vector> 13 #include <queue> 14 #include <set> 15 #include <map> 16 #include <string> 17 #include <math.h> 18 #include <stdlib.h> 19 #include <time.h> 20 using namespace std; 21 22 const int MAXN = 200010; 23 struct Node 24 { 25 int l,r; 26 long long sum;//区间和 27 int mx;//最大值 28 int lazy;//懒惰标记,表示赋值为相同的 29 }segTree[MAXN*3]; 30 void push_up(int i) 31 { 32 if(segTree[i].l == segTree[i].r)return; 33 segTree[i].sum = segTree[i<<1].sum + segTree[(i<<1)|1].sum; 34 segTree[i].mx = max(segTree[i<<1].mx,segTree[(i<<1)|1].mx); 35 } 36 void Update_Same(int i,int v) 37 { 38 segTree[i].sum = (long long)v*(segTree[i].r - segTree[i].l + 1); 39 segTree[i].mx = v; 40 segTree[i].lazy = 1; 41 } 42 void push_down(int i) 43 { 44 if(segTree[i].l == segTree[i].r)return; 45 if(segTree[i].lazy) 46 { 47 Update_Same(i<<1,segTree[i].mx); 48 Update_Same((i<<1)|1,segTree[i].mx); 49 segTree[i].lazy = 0; 50 } 51 } 52 int mex[MAXN]; 53 void Build(int i,int l,int r) 54 { 55 segTree[i].l = l; 56 segTree[i].r = r; 57 segTree[i].lazy = 0; 58 if(l == r) 59 { 60 segTree[i].mx = mex[l]; 61 segTree[i].sum = mex[l]; 62 return; 63 } 64 int mid = (l + r)>>1; 65 Build(i<<1,l,mid); 66 Build((i<<1)|1,mid+1,r); 67 push_up(i); 68 } 69 //将区间[l,r]的数都修改为v 70 void Update(int i,int l,int r,int v) 71 { 72 if(segTree[i].l == l && segTree[i].r == r) 73 { 74 Update_Same(i,v); 75 return; 76 } 77 push_down(i); 78 int mid = (segTree[i].l + segTree[i].r)>>1; 79 if(r <= mid) 80 { 81 Update(i<<1,l,r,v); 82 } 83 else if(l > mid) 84 { 85 Update((i<<1)|1,l,r,v); 86 } 87 else 88 { 89 Update(i<<1,l,mid,v); 90 Update((i<<1)|1,mid+1,r,v); 91 } 92 push_up(i); 93 } 94 //得到值>= v的最左边位置 95 int Get(int i,int v) 96 { 97 if(segTree[i].l == segTree[i].r) 98 return segTree[i].l; 99 push_down(i); 100 if(segTree[i<<1].mx > v) 101 return Get(i<<1,v); 102 else return Get((i<<1)|1,v); 103 } 104 int a[MAXN]; 105 map<int,int>mp; 106 int next[MAXN]; 107 int main() 108 { 109 //freopen("in.txt","r",stdin); 110 //freopen("out.txt","w",stdout); 111 int n; 112 while(scanf("%d",&n) && n) 113 { 114 for(int i = 1;i <= n;i++) 115 scanf("%d",&a[i]); 116 mp.clear(); 117 int tmp = 0; 118 for(int i = 1;i <= n;i++) 119 { 120 mp[a[i]] = 1; 121 while(mp.find(tmp) != mp.end())tmp++; 122 mex[i] = tmp; 123 } 124 mp.clear(); 125 for(int i = n;i >= 1;i--) 126 { 127 if(mp.find(a[i]) == mp.end())next[i] = n+1; 128 else next[i] = mp[a[i]]; 129 mp[a[i]] = i; 130 } 131 Build(1,1,n); 132 long long sum = 0; 133 for(int i = 1;i <= n;i++) 134 { 135 sum += segTree[1].sum; 136 if(segTree[1].mx > a[i]) 137 { 138 int l = Get(1,a[i]); 139 int r = next[i]; 140 if(l < r) 141 Update(1,l,r-1,a[i]); 142 } 143 Update(1,i,i,0); 144 } 145 printf("%I64d ",sum); 146 147 } 148 return 0; 149 }