• HDU 4497 GCD and LCM (合数分解)


    GCD and LCM

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
    Total Submission(s): 40    Accepted Submission(s): 22


    Problem Description
    Given two positive integers G and L, could you tell me how many solutions of (x, y, z) there are, satisfying that gcd(x, y, z) = G and lcm(x, y, z) = L? 
    Note, gcd(x, y, z) means the greatest common divisor of x, y and z, while lcm(x, y, z) means the least common multiple of x, y and z. 
    Note 2, (1, 2, 3) and (1, 3, 2) are two different solutions.
     
    Input
    First line comes an integer T (T <= 12), telling the number of test cases. 
    The next T lines, each contains two positive 32-bit signed integers, G and L. 
    It’s guaranteed that each answer will fit in a 32-bit signed integer.
     
    Output
    For each test case, print one line with the number of solutions satisfying the conditions above.
     
    Sample Input
    2 6 72 7 33
     
    Sample Output
    72 0
     
    Source
     
    Recommend
    liuyiding
     

    对G和L 分别进行合数分解。

    很显然,如果G中出现了L中没有的素数,或者指数比L大的话,肯定答案就是0了、

    对于素数p,如果L中的指数为num1,G中的指数为num2.

    显然必须是num1 >= num2;

    3个数p的指数必须在num1~num2之间,而且必须有一个为num1,一个为num2

    容斥原理可以求得种数是:

     (num1-num2+1)*(num1-num2+1)*(num1-num2+1) - 

    2*(num1-num2)*(num1-num2)*(num1-num2) + 

     (num1-num2-1)*(num1-num2-1)*(num1-num2-1);

    然后乘起来就是答案:

      1 /* ***********************************************
      2 Author        :kuangbin
      3 Created Time  :2013/8/24 12:48:31
      4 File Name     :F:2013ACM练习比赛练习2013通化邀请赛1005.cpp
      5 ************************************************ */
      6 
      7 #include <stdio.h>
      8 #include <string.h>
      9 #include <iostream>
     10 #include <algorithm>
     11 #include <vector>
     12 #include <queue>
     13 #include <set>
     14 #include <map>
     15 #include <string>
     16 #include <math.h>
     17 #include <stdlib.h>
     18 #include <time.h>
     19 using namespace std;
     20 
     21 const int MAXN = 1000000;
     22 int prime[MAXN+1];
     23 void getPrime()
     24 {
     25     memset(prime,0,sizeof(prime));
     26     for(int i = 2;i <= MAXN;i++)
     27     {
     28         if(!prime[i])prime[++prime[0]] = i;
     29         for(int j = 1;j <= prime[0] && prime[j] <= MAXN/i;j++)
     30         {
     31             prime[prime[j]*i] = 1;
     32             if(i % prime[j] == 0)break;
     33         }
     34     }
     35 }
     36 long long factor[100][2];
     37 int fatCnt;
     38 int getFactors(long long x)
     39 {
     40     fatCnt = 0;
     41     long long tmp = x;
     42     for(int i = 1; prime[i] <= tmp/prime[i];i++)
     43     {
     44         factor[fatCnt][1] = 0;
     45         if(tmp % prime[i] == 0 )
     46         {
     47             factor[fatCnt][0] = prime[i];
     48             while(tmp % prime[i] == 0)
     49             {
     50                 factor[fatCnt][1] ++;
     51                 tmp /= prime[i];
     52             }
     53             fatCnt++;
     54         }
     55     }
     56     if(tmp != 1)
     57     {
     58         factor[fatCnt][0] = tmp;
     59         factor[fatCnt++][1] = 1;
     60     }
     61     return fatCnt;
     62 }
     63 int a[100],b[100];
     64 map<int,int>mp1,mp2;
     65 int main()
     66 {
     67     //freopen("in.txt","r",stdin);
     68     //freopen("out.txt","w",stdout);
     69     getPrime();
     70     //for(int i = 1;i <= 20;i++)
     71         //cout<<prime[i]<<endl;
     72     int n,m;
     73     int T;
     74     scanf("%d",&T);
     75     while(T--)
     76     {
     77         scanf("%d%d",&n,&m);
     78         mp1.clear();
     79         mp2.clear();
     80         getFactors(m);
     81         int cnt1 = fatCnt;
     82         for(int i = 0;i < cnt1;i++)
     83         {
     84             mp1[factor[i][0]] = factor[i][1];
     85             a[i] = factor[i][0];
     86             //printf("%I64d %I64d
    ",factor[i][0],factor[i][1]);
     87         }
     88         getFactors(n);
     89         int cnt2 = fatCnt;
     90         bool flag = true;
     91         for(int i = 0;i < cnt2;i++)
     92         {
     93             mp2[factor[i][0]] = factor[i][1];
     94             if(mp1[factor[i][0]] < factor[i][1])
     95                 flag = false;
     96             b[i] = factor[i][0];
     97             //printf("%I64d %I64d
    ",factor[i][0],factor[i][1]);
     98         }
     99         if(!flag)
    100         {
    101             printf("0
    ");
    102             continue;
    103         }
    104         int ans = 1;
    105         for(int i = 0;i < cnt1;i++)
    106         {
    107             int num1 = mp1[a[i]];
    108             int num2 = mp2[a[i]];
    109             if(num1 == num2)
    110                 ans *= 1;
    111             else
    112             {
    113                 long long tmp = (num1-num2+1)*(num1-num2+1)*(num1-num2+1);
    114                 tmp -= 2*(num1-num2)*(num1-num2)*(num1-num2);
    115                 tmp += (num1-num2-1)*(num1-num2-1)*(num1-num2-1);
    116                 ans *= tmp;
    117             }
    118         }
    119         printf("%d
    ",ans);
    120     }
    121     return 0;
    122 }
  • 相关阅读:
    flask中程序和请求上下文
    flask的初始化
    git 强制覆盖本地代码
    python编写一个带参数的装饰器
    Android 11 unexpected LOCAL_MODULE_CLASS for prebuilts: FAKE
    systemctl自定义service执行shell脚本时报错:code=exited, status=203/EXEC
    shell应用记录
    ssm在maven项目中的需要的依赖
    swiper 5张卡片轮播图实现效果
    Codeforces 1534 题解
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3279626.html
Copyright © 2020-2023  润新知