GCD
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4272 Accepted Submission(s): 1492
Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.
Yoiu can assume that a = c = 1 in all test cases.
Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
Output
For each test case, print the number of choices. Use the format in the example.
Sample Input
2
1 3 1 5 1
1 11014 1 14409 9
Sample Output
Case 1: 9
Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).Source
Recommend
wangye
题意: 在1~a, 1~b中挑出(x,y)满足gcd(x,y) = k , 求(x,y) 的对数 , a,b<=10^5
思路: gcd(x, y) == k 说明x,y都能被k整除, 但是能被k整除的未必gcd=k , 必须还要满足
互质关系. 问题就转化为了求1~a/k 和 1~b/k间互质对数的问题
可以把a设置为小的那个数, 那么以y>x来保持唯一性(题目要求, 比如[1,3] = [3,1] )
接下来份两种情况:
1. y <= a , 那么对数就是 1~a的欧拉函数的累计和(容易想到)
2. y >= a , 这个时候欧拉函数不能用了,怎么做? 可以用容斥原理,把y与1~a互质对数问题转换为
1 /* *********************************************** 2 Author :kuangbin 3 Created Time :2013/8/19 22:08:43 4 File Name :F:2013ACM练习专题学习数学HDUHDU1695GCD.cpp 5 ************************************************ */ 6 7 #include <stdio.h> 8 #include <string.h> 9 #include <iostream> 10 #include <algorithm> 11 #include <vector> 12 #include <queue> 13 #include <set> 14 #include <map> 15 #include <string> 16 #include <math.h> 17 #include <stdlib.h> 18 #include <time.h> 19 using namespace std; 20 21 const int MAXN = 10000; 22 int prime[MAXN+1]; 23 void getPrime() 24 { 25 memset(prime,0,sizeof(prime)); 26 for(int i = 2;i <= MAXN;i++) 27 { 28 if(!prime[i])prime[++prime[0]] = i; 29 for(int j = 1;j <= prime[0] && prime[j] <= MAXN/i;j++) 30 { 31 prime[prime[j]*i] = 1; 32 if(i%prime[j] == 0)break; 33 } 34 } 35 } 36 long long factor[100][2]; 37 int fatCnt; 38 int getFactors(long long x) 39 { 40 fatCnt = 0; 41 long long tmp = x; 42 for(int i = 1; prime[i] <= tmp/prime[i];i++) 43 { 44 factor[fatCnt][1] = 0; 45 if(tmp%prime[i] == 0) 46 { 47 factor[fatCnt][0] = prime[i]; 48 while(tmp%prime[i] == 0) 49 { 50 factor[fatCnt][1]++; 51 tmp /= prime[i]; 52 } 53 fatCnt++; 54 } 55 } 56 if(tmp != 1) 57 { 58 factor[fatCnt][0] = tmp; 59 factor[fatCnt++][1] = 1; 60 } 61 return fatCnt; 62 } 63 int euler[100010]; 64 void getEuler() 65 { 66 memset(euler,0,sizeof(euler)); 67 euler[1] = 1; 68 for(int i = 2;i <= 100000;i++) 69 if(!euler[i]) 70 for(int j = i; j <= 100000;j += i) 71 { 72 if(!euler[j]) 73 euler[j] = j; 74 euler[j] = euler[j]/i*(i-1); 75 } 76 } 77 int calc(int n,int m)//n < m,求1-n内和m互质的数的个数 78 { 79 getFactors(m); 80 int ans = 0; 81 for(int i = 1;i < (1<<fatCnt);i++) 82 { 83 int cnt = 0; 84 int tmp = 1; 85 for(int j = 0;j < fatCnt;j++) 86 if(i&(1<<j)) 87 { 88 cnt++; 89 tmp *= factor[j][0]; 90 } 91 if(cnt&1)ans += n/tmp; 92 else ans -= n/tmp; 93 } 94 return n - ans; 95 } 96 int main() 97 { 98 //freopen("in.txt","r",stdin); 99 //freopen("out.txt","w",stdout); 100 getPrime(); 101 int a,b,c,d; 102 int T; 103 int k; 104 scanf("%d",&T); 105 int iCase = 0; 106 getEuler(); 107 while(T--) 108 { 109 iCase++; 110 scanf("%d%d%d%d%d",&a,&b,&c,&d,&k); 111 if(k == 0 || k > b || k > d) 112 { 113 printf("Case %d: 0 ",iCase); 114 continue; 115 } 116 if(b > d)swap(b,d); 117 b /= k; 118 d /= k; 119 long long ans = 0; 120 for(int i = 1;i <= b;i++) 121 ans += euler[i]; 122 for(int i = b+1;i <= d;i++) 123 ans += calc(b,i); 124 printf("Case %d: %I64d ",iCase,ans); 125 } 126 127 return 0; 128 }