• HDU 4622 Reincarnation (查询一段字符串的不同子串个数,后缀自动机)


    Reincarnation

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 843    Accepted Submission(s): 283


    Problem Description
    Now you are back,and have a task to do:
    Given you a string s consist of lower-case English letters only,denote f(s) as the number of distinct sub-string of s.
    And you have some query,each time you should calculate f(s[l...r]), s[l...r] means the sub-string of s start from l end at r.
     
    Input
    The first line contains integer T(1<=T<=5), denote the number of the test cases.
    For each test cases,the first line contains a string s(1 <= length of s <= 2000).
    Denote the length of s by n.
    The second line contains an integer Q(1 <= Q <= 10000),denote the number of queries.
    Then Q lines follows,each lines contains two integer l, r(1 <= l <= r <= n), denote a query.
     
    Output
    For each test cases,for each query,print the answer in one line.
     
    Sample Input
    2 bbaba 5 3 4 2 2 2 5 2 4 1 4 baaba 5 3 3 3 4 1 4 3 5 5 5
     
    Sample Output
    3 1 7 5 8 1 3 8 5 1
    Hint
    I won't do anything against hash because I am nice.Of course this problem has a solution that don't rely on hash.
     
    Source
     
    Recommend
    zhuyuanchen520
     

    刚刚学了下后缀自动机,然后把这题先A掉。

    这题就是查询一个区间内的不同子串的个数。

    如果单单是求一个字符串的不同子串个数,无论是后缀数组还是后缀自动机都非常容易实现。

    N<=2000.

    我是用后缀自动机预处理出所有区间的不同子串个数。

    建立n次后缀自动机。

    后缀自动机要理解其含义,从起点到每个点的不同路径,就是不同的子串。

    到每一个点,不同路径,其实就是以这个点为最后一个字符的后缀,长度是介于(p->fa->len,p->len]之间的,个数也就清楚了。

    而且这个其实是动态变化的,每加入一个字符,就可以知道新加了几个不同子串。

    加个pos,记录位置,这样就很容易预处理了。

    学了一天的后缀自动,在世界冠军cxlove的博客中一直看SAM,终于有点理解了,Orz,太神奇了。

      1 #include <stdio.h>
      2 #include <string.h>
      3 #include <algorithm>
      4 #include <iostream>
      5 using namespace std;
      6 
      7 const int CHAR = 26;
      8 const int MAXN = 2020;
      9 struct SAM_Node
     10 {
     11     SAM_Node *fa,*next[CHAR];
     12     int len;
     13     int id,pos;
     14     SAM_Node(){}
     15     SAM_Node(int _len)
     16     {
     17         fa = 0;
     18         len = _len;
     19         memset(next,0,sizeof(next));
     20     }
     21 };
     22 SAM_Node SAM_node[MAXN*2], *SAM_root, *SAM_last;
     23 int SAM_size;
     24 SAM_Node *newSAM_Node(int len)
     25 {
     26     SAM_node[SAM_size] = SAM_Node(len);
     27     SAM_node[SAM_size].id = SAM_size;
     28     return &SAM_node[SAM_size++];
     29 }
     30 SAM_Node *newSAM_Node(SAM_Node *p)
     31 {
     32     SAM_node[SAM_size] = *p;
     33     SAM_node[SAM_size].id = SAM_size;
     34     return &SAM_node[SAM_size++];
     35 }
     36 void SAM_init()
     37 {
     38     SAM_size = 0;
     39     SAM_root = SAM_last = newSAM_Node(0);
     40     SAM_node[0].pos = 0;
     41 }
     42 void SAM_add(int x,int len)
     43 {
     44     SAM_Node *p = SAM_last, *np = newSAM_Node(p->len+1);
     45     np->pos = len;
     46     SAM_last = np;
     47     for(;p && !p->next[x];p = p->fa)
     48         p->next[x] = np;
     49     if(!p)
     50     {
     51         np->fa = SAM_root;
     52         return;
     53     }
     54     SAM_Node *q = p->next[x];
     55     if(q->len == p->len + 1)
     56     {
     57         np->fa = q;
     58         return;
     59     }
     60     SAM_Node *nq = newSAM_Node(q);
     61     nq->len = p->len + 1;
     62     q->fa = nq;
     63     np->fa = nq;
     64     for(;p && p->next[x] == q;p = p->fa)
     65         p->next[x] = nq;
     66 }
     67 void SAM_build(char *s)
     68 {
     69     SAM_init();
     70     int len = strlen(s);
     71     for(int i = 0;i < len;i++)
     72         SAM_add(s[i] - 'a',i+1);
     73 }
     74 
     75 int Q[MAXN][MAXN];
     76 char str[MAXN];
     77 int main()
     78 {
     79     int T;
     80     scanf("%d",&T);
     81     while(T--)
     82     {
     83         scanf("%s",str);
     84         int n = strlen(str);
     85         memset(Q,0,sizeof(Q));
     86         for(int i = 0;i < n;i++)
     87         {
     88             SAM_init();
     89             for(int j = i;j < n;j++)
     90             {
     91                 SAM_add(str[j]-'a',j-i+1);
     92             }
     93             for(int j = 1;j < SAM_size;j++)
     94             {
     95                 Q[i][SAM_node[j].pos-1+i]+=SAM_node[j].len - SAM_node[j].fa->len;
     96             }
     97             for(int j = i+1;j < n;j++)
     98                 Q[i][j] += Q[i][j-1];
     99         }
    100         int M;
    101         int u,v;
    102         scanf("%d",&M);
    103         while(M--)
    104         {
    105             scanf("%d%d",&u,&v);
    106             u--;v--;
    107             printf("%d
    ",Q[u][v]);
    108         }
    109     }
    110     return 0;
    111 }
  • 相关阅读:
    Idea默认的全局设置,如Maven等
    mybatis中Parameter index out of range (1 > number of parameters, which is 0).
    SpringBoot入门-2(两种热部署方式)
    Java中关于static语句块的理解
    HashMap源码剖析
    keytool用法总结
    Tomcat配置https
    git的安装及其使用
    java中Arrays类的应用
    三次握手四次挥手
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3239825.html
Copyright © 2020-2023  润新知