• POJ 3422 Kaka's Matrix Travels(费用流)


    Kaka's Matrix Travels
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6792   Accepted: 2679

    Description

    On an N × N chessboard with a non-negative number in each grid, Kaka starts his matrix travels with SUM = 0. For each travel, Kaka moves one rook from the left-upper grid to the right-bottom one, taking care that the rook moves only to the right or down. Kaka adds the number to SUM in each grid the rook visited, and replaces it with zero. It is not difficult to know the maximum SUM Kaka can obtain for his first travel. Now Kaka is wondering what is the maximum SUM he can obtain after his Kth travel. Note the SUM is accumulative during the K travels.

    Input

    The first line contains two integers N and K (1 ≤ N ≤ 50, 0 ≤ K ≤ 10) described above. The following N lines represents the matrix. You can assume the numbers in the matrix are no more than 1000.

    Output

    The maximum SUM Kaka can obtain after his Kth travel.

    Sample Input

    3 2
    1 2 3
    0 2 1
    1 4 2
    

    Sample Output

    15

    Source

    POJ Monthly--2007.10.06, Huang, Jinsong

    测试一下最小费用最大流的模板。

    很经典的建图方法。

      1 #include <stdio.h>
      2 #include <algorithm>
      3 #include <string.h>
      4 #include <iostream>
      5 #include <string>
      6 #include <queue>
      7 using namespace std;
      8 
      9 const int MAXN = 10000;
     10 const int MAXM = 100000;
     11 const int INF = 0x3f3f3f3f;
     12 struct Edge
     13 {
     14     int to,next,cap,flow,cost;
     15 }edge[MAXM];
     16 int head[MAXN],tol;
     17 int pre[MAXN],dis[MAXN];
     18 bool vis[MAXN];
     19 int N;//节点总个数,节点编号从0~N-1
     20 void init(int n)
     21 {
     22     N = n;
     23     tol = 0;
     24     memset(head,-1,sizeof(head));
     25 }
     26 void addedge(int u,int v,int cap,int cost)
     27 {
     28     edge[tol].to = v;
     29     edge[tol].cap = cap;
     30     edge[tol].cost = cost;
     31     edge[tol].flow = 0;
     32     edge[tol].next = head[u];
     33     head[u] = tol++;
     34     edge[tol].to = u;
     35     edge[tol].cap = 0;
     36     edge[tol].cost = -cost;
     37     edge[tol].flow = 0;
     38     edge[tol].next = head[v];
     39     head[v] = tol++;
     40 }
     41 bool spfa(int s,int t)
     42 {
     43     queue<int>q;
     44     for(int i = 0;i < N;i++)
     45     {
     46         dis[i] = INF;
     47         vis[i] = false;
     48         pre[i] = -1;
     49     }
     50     dis[s] = 0;
     51     vis[s] = true;
     52     q.push(s);
     53     while(!q.empty())
     54     {
     55         int u = q.front();
     56         q.pop();
     57         vis[u] = false;
     58         for(int i = head[u]; i != -1;i = edge[i].next)
     59         {
     60             int v = edge[i].to;
     61             if(edge[i].cap > edge[i].flow &&
     62                dis[v] > dis[u] + edge[i].cost )
     63             {
     64                 dis[v] = dis[u] + edge[i].cost;
     65                 pre[v] = i;
     66                 if(!vis[v])
     67                 {
     68                     vis[v] = true;
     69                     q.push(v);
     70                 }
     71             }
     72         }
     73     }
     74     if(pre[t] == -1)return false;
     75     else return true;
     76 }
     77 //返回的是最大流,cost存的是最小费用
     78 int minCostMaxflow(int s,int t,int &cost)
     79 {
     80     int flow = 0;
     81     cost = 0;
     82     while(spfa(s,t))
     83     {
     84         int Min = INF;
     85         for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
     86         {
     87             if(Min > edge[i].cap - edge[i].flow)
     88                 Min = edge[i].cap - edge[i].flow;
     89         }
     90         for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
     91         {
     92             edge[i].flow += Min;
     93             edge[i^1].flow -= Min;
     94             cost += edge[i].cost * Min;
     95         }
     96         flow += Min;
     97     }
     98     return flow;
     99 }
    100 
    101 int a[55][55];
    102 int main()
    103 {
    104     int n,k;
    105     while(scanf("%d%d",&n,&k) == 2)
    106     {
    107         for(int i = 0;i < n;i++)
    108             for(int j = 0;j < n;j++)
    109                 scanf("%d",&a[i][j]);
    110         init(2*n*n+2);
    111         for(int i = 0;i < n;i++)
    112             for(int j = 0;j < n;j++)
    113             {
    114                 addedge(n*i+j+1,n*n+n*i+j+1,1,-a[i][j]);
    115                 addedge(n*i+j+1,n*n+n*i+j+1,INF,0);
    116             }
    117 
    118         for(int i = 0;i < n;i++)
    119             for(int j = 0;j < n;j++)
    120             {
    121                 if(i < n-1)
    122                     addedge(n*n+n*i+j+1,n*(i+1)+j+1,INF,0);
    123                 if(j < n-1)
    124                     addedge(n*n+n*i+j+1,n*i+j+1+1,INF,0);
    125             }
    126         addedge(0,1,k,0);
    127         addedge(2*n*n,2*n*n+1,INF,0);
    128         int cost;
    129         minCostMaxflow(0,2*n*n+1,cost);
    130         printf("%d
    ",-cost);
    131     }
    132     return 0;
    133 }
  • 相关阅读:
    centos 6.4 FTP安装和配置
    常用正则表达式集锦
    同一服务器部署多个tomcat时的端口号修改详情
    介绍linux下vi命令的使用
    CentOS下安装两个或多个Tomcat7
    tomcat解析之简单web服务器(图)
    吻你
    用C++语言开发Android程序 配置开发环境
    内地开源镜像网站
    Android SDK Android NDK Android Studio 官方下载地址
  • 原文地址:https://www.cnblogs.com/kuangbin/p/3236027.html
Copyright © 2020-2023  润新知