• POJ 1753 Flip Game(高斯消元)


    Flip Game
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 20103   Accepted: 8710

    Description

    Flip game is played on a rectangular 4x4 field with two-sided pieces placed on each of its 16 squares. One side of each piece is white and the other one is black and each piece is lying either it's black or white side up. Each round you flip 3 to 5 pieces, thus changing the color of their upper side from black to white and vice versa. The pieces to be flipped are chosen every round according to the following rules:
    1. Choose any one of the 16 pieces.
    2. Flip the chosen piece and also all adjacent pieces to the left, to the right, to the top, and to the bottom of the chosen piece (if there are any).

    Consider the following position as an example:

    bwbw
    wwww
    bbwb
    bwwb
    Here "b" denotes pieces lying their black side up and "w" denotes pieces lying their white side up. If we choose to flip the 1st piece from the 3rd row (this choice is shown at the picture), then the field will become:

    bwbw
    bwww
    wwwb
    wwwb
    The goal of the game is to flip either all pieces white side up or all pieces black side up. You are to write a program that will search for the minimum number of rounds needed to achieve this goal.

    Input

    The input consists of 4 lines with 4 characters "w" or "b" each that denote game field position.

    Output

    Write to the output file a single integer number - the minimum number of rounds needed to achieve the goal of the game from the given position. If the goal is initially achieved, then write 0. If it's impossible to achieve the goal, then write the word "Impossible" (without quotes).

    Sample Input

    bwwb
    bbwb
    bwwb
    bwww

    Sample Output

    4
    

    Source

     
     
    这题直接dfs,或者是状态压缩去做可以的。
    下面是高斯消元法。
    高斯消元法要找最小的步数很难。、
    尤其是有自由变元时,要枚举所以自由变元的取值情况来做。
     
      1 /*
      2 POJ 1753
      3 */
      4 #include<stdio.h>
      5 #include<string.h>
      6 #include<iostream>
      7 #include<algorithm>
      8 #include<math.h>
      9 using namespace std;
     10 const int MAXN=30;
     11 const int INF=0x3fffffff;
     12 int a[MAXN][MAXN];//增广矩阵
     13 int x[MAXN];
     14 int free_x[MAXN];
     15 
     16 // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
     17 //-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
     18 //有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
     19 int Gauss(int equ,int var)
     20 {
     21     int i,j,k;
     22     int max_r;// 当前这列绝对值最大的行.
     23     int col;//当前处理的列
     24     int ta,tb;
     25     int LCM;
     26     int temp;
     27     int free_index;
     28     int num=0;
     29     for(int i=0;i<=var;i++)
     30     {
     31         x[i]=0;
     32         free_x[i]=0;
     33     }
     34     //转换为阶梯阵.
     35     col=0; // 当前处理的列
     36     for(k = 0;k < equ && col < var;k++,col++)
     37     {// 枚举当前处理的行.
     38 // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
     39         max_r=k;
     40         for(i=k+1;i<equ;i++)
     41         {
     42             if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
     43         }
     44         if(max_r!=k)
     45         {// 与第k行交换.
     46             for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
     47         }
     48         if(a[k][col]==0)
     49         {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
     50             k--;
     51             free_x[num++]=col;
     52             continue;
     53         }
     54         for(i=k+1;i<equ;i++)
     55         {// 枚举要删去的行.
     56             if(a[i][col]!=0)
     57             {
     58               //  LCM = lcm(abs(a[i][col]),abs(a[k][col]));
     59               //  ta = LCM/abs(a[i][col]);
     60               //  tb = LCM/abs(a[k][col]);
     61               //  if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
     62                 for(j=col;j<var+1;j++)
     63                 {
     64                     a[i][j] ^= a[k][j];
     65                 }
     66             }
     67         }
     68     }
     69 
     70     // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
     71     for (i = k; i < equ; i++)
     72     { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
     73         if (a[i][col] != 0) return -1;
     74     }
     75     int stat=1<<(var-k);//自由变元有 var-k 个
     76     int res=INF;
     77     for(i=0;i<stat;i++)//枚举所有变元
     78     {
     79         int cnt=0;
     80         int index=i;
     81         for(j=0;j<var-k;j++)
     82         {
     83             x[free_x[j]]=(index&1);
     84             if(x[free_x[j]]) cnt++;
     85             index>>=1;
     86         }
     87         for(j=k-1;j>=0;j--)
     88         {
     89             int tmp=a[j][var];
     90             int t=0;
     91             while(a[j][t]==0)t++;
     92             for(int l=t+1;l<var;l++)
     93               if(a[j][l]) tmp^=x[l];
     94             x[t]=tmp;
     95             if(x[t])cnt++;
     96         }
     97         if(cnt<res)res=cnt;
     98     }
     99     return res;
    100 }
    101 
    102 void init()
    103 {
    104     memset(a,0,sizeof(a));
    105     for(int i=0;i<4;i++)
    106        for(int j=0;j<4;j++)
    107        {
    108            int t=i*4+j;
    109            a[t][t]=1;
    110            if(i>0)a[(i-1)*4+j][t]=1;
    111            if(i<3)a[(i+1)*4+j][t]=1;
    112            if(j>0)a[i*4+j-1][t]=1;
    113            if(j<3)a[i*4+j+1][t]=1;
    114        }
    115 }
    116 char str[20][20];
    117 int main()
    118 {
    119   //  freopen("in.txt","r",stdin);
    120   //  freopen("out.txt","w",stdout);
    121     while(scanf("%s",&str[0])!=EOF)
    122     {
    123         for(int i=1;i<4;i++)scanf("%s",&str[i]);
    124         init();
    125         for(int i=0;i<4;i++)
    126           for(int j=0;j<4;j++)
    127           {
    128               if(str[i][j]=='b')a[i*4+j][16]=0;
    129               else a[i*4+j][16]=1;
    130           }
    131         int ans1=Gauss(16,16);
    132         init();
    133         for(int i=0;i<4;i++)
    134           for(int j=0;j<4;j++)
    135           {
    136               if(str[i][j]=='b')a[i*4+j][16]=1;
    137               else a[i*4+j][16]=0;
    138           }
    139         int ans2=Gauss(16,16);
    140         if(ans1==-1&&ans2==-1)
    141         {
    142             printf("Impossible\n");
    143             continue;
    144         }
    145         else if(ans1==-1&&ans2!=-1)printf("%d\n",ans2);
    146         else if(ans1!=-1&&ans2==-1)printf("%d\n",ans1);
    147         printf("%d\n",min(ans1,ans2));
    148     }
    149     return 0;
    150 }
  • 相关阅读:
    APP上传问题集锦
    objectiveC【语法】修饰符 static extern const
    NSLog
    iOS开发之获取系统相册中的图片与视频(内带url转换)
    Re:iOS 开发中的争议(一、二)
    iOS静态库(.a 和framework)
    iOS 获取本地视频的缩略图
    iOS 查询数组中的对象
    IOS判断文件类型
    循环引用问题 -- dealloc方法不执行
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2666051.html
Copyright © 2020-2023  润新知