Parencodings
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 15075 | Accepted: 8989 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2 6 4 5 6 6 6 6 9 4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6 1 1 2 4 5 1 1 3 9
Source
/* POJ 1068 Parencodings 简单模拟 用数组a[i]表示第i个右括号和第i+1个右括号间的左括号数 然后逐渐找和右括号匹配的左括号所处的位置 i-j */ #include<stdio.h> #include<iostream> const int MAXN=50; int P[MAXN]; int W[MAXN]; int a[MAXN]; int main() { int T; int n; scanf("%d",&T); while(T--) { scanf("%d",&n); for(int i=1;i<=n;i++) scanf("%d",&P[i]); a[0]=P[1]; for(int i=1;i<n;i++) a[i]=P[i+1]-P[i]; int j; for(int i=1;i<=n;i++) { for(j=i-1;j>=0;j--)//匹配该右括号 { if(a[j]>0) { a[j]--; break; } } W[i]=i-j; } for(int i=1;i<n;i++)printf("%d ",W[i]); printf("%d\n",W[n]); } return 0; }