• ACM HDU 2389 Rain on your Parade(二分匹配 HopcroftCarp的算法)


    Rain on your Parade

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 655350/165535 K (Java/Others)
    Total Submission(s): 1310    Accepted Submission(s): 373


    Problem Description
    You’re giving a party in the garden of your villa by the sea. The party is a huge success, and everyone is here. It’s a warm, sunny evening, and a soothing wind sends fresh, salty air from the sea. The evening is progressing just as you had imagined. It could be the perfect end of a beautiful day.
    But nothing ever is perfect. One of your guests works in weather forecasting. He suddenly yells, “I know that breeze! It means its going to rain heavily in just a few minutes!” Your guests all wear their best dresses and really would not like to get wet, hence they stand terrified when hearing the bad news.
    You have prepared a few umbrellas which can protect a few of your guests. The umbrellas are small, and since your guests are all slightly snobbish, no guest will share an umbrella with other guests. The umbrellas are spread across your (gigantic) garden, just like your guests. To complicate matters even more, some of your guests can’t run as fast as the others.
    Can you help your guests so that as many as possible find an umbrella before it starts to pour?

    Given the positions and speeds of all your guests, the positions of the umbrellas, and the time until it starts to rain, find out how many of your guests can at most reach an umbrella. Two guests do not want to share an umbrella, however.
     

    Input
    The input starts with a line containing a single integer, the number of test cases.
    Each test case starts with a line containing the time t in minutes until it will start to rain (1 <=t <= 5). The next line contains the number of guests m (1 <= m <= 3000), followed by m lines containing x- and y-coordinates as well as the speed si in units per minute (1 <= si <= 3000) of the guest as integers, separated by spaces. After the guests, a single line contains n (1 <= n <= 3000), the number of umbrellas, followed by n lines containing the integer coordinates of each umbrella, separated by a space.
    The absolute value of all coordinates is less than 10000.
     

    Output
    For each test case, write a line containing “Scenario #i:”, where i is the number of the test case starting at 1. Then, write a single line that contains the number of guests that can at most reach an umbrella before it starts to rain. Terminate every test case with a blank line.
     

    Sample Input
    2 1 2 1 0 3 3 0 3 2 4 0 6 0 1 2 1 1 2 3 3 2 2 2 2 4 4
     

    Sample Output
    Scenario #1: 2 Scenario #2: 2
     

    Source
     

    Recommend
    lcy
     
     
    先用匈牙利算法的DFS版本,一直超时,
    后改用Hopcroft-Carp算法,顺利AC。
     
    超时版代码:、
    #include<stdio.h>
    #include
    <math.h>
    #include
    <iostream>
    using namespace std;
    #define eps 1e-6
    #define MAXN 3005
    struct Node1
    {
    int x,y,s;
    }guests[MAXN];
    struct Node2
    {
    int x,y;
    }um[MAXN];
    double dis(Node1 a,Node2 b)
    {
    double x=a.x-b.x;
    double y=a.y-b.y;

    return sqrt(x*x+y*y);
    }
    int uN,vN;
    int g[MAXN][MAXN];
    bool used[MAXN];
    int linker[MAXN];
    bool dfs(int u)
    {
    int v;
    for(v=0;v<vN;v++)
    if(g[u][v]&&!used[v])
    {
    used[v]
    =true;
    if(linker[v]==-1||dfs(linker[v]))
    {
    linker[v]
    =u;
    return true;
    }
    }
    return false;
    }
    int hungary()
    {
    int res=0;
    int u;
    memset(linker,
    -1,sizeof(linker));
    for(u=0;u<uN;u++)
    {
    memset(used,
    0,sizeof(used));
    if(dfs(u)) res++;
    }
    return res;
    }
    int main()
    {
    //freopen("test.in","r",stdin);
    //freopen("test.out","w",stdout);
    int n,m,t,i,j;
    int T,iCase=0;
    scanf(
    "%d",&T);
    while(T--)
    {
    iCase
    ++;
    scanf(
    "%d",&t);
    scanf(
    "%d",&m);
    for(i=0;i<m;i++)
    scanf(
    "%d%d%d",&guests[i].x,&guests[i].y,&guests[i].s);
    scanf(
    "%d",&n);
    for(i=0;i<n;i++)
    scanf(
    "%d%d",&um[i].x,&um[i].y);
    uN
    =0;vN=n;
    bool cnt;
    memset(g,
    0,sizeof(g));
    for(i=0;i<m;i++)
    {
    cnt
    =false;
    for(j=0;j<n;j++)
    {
    if(dis(guests[i],um[j])/guests[i].s-t<eps)
    {
    g[i][j]
    =1;cnt=true;
    }
    }
    if(cnt) uN++;
    }
    printf(
    "Scenario #%d:\n%d\n\n",iCase,hungary());
    }
    return 0;
    }

    AC代码:

    #include<stdio.h>
    #include
    <queue>
    #include
    <iostream>
    #include
    <string.h>
    #include
    <math.h>
    using namespace std;
    #define eps 1e-6

    const int MAXN=3005;
    const int INF=1<<28;
    int g[MAXN][MAXN],Mx[MAXN],My[MAXN],Nx,Ny;
    int dx[MAXN],dy[MAXN],dis;
    bool vst[MAXN];
    struct Node1
    {
    int x,y,s;
    }guests[MAXN];
    struct Node2
    {
    int x,y;
    }um[MAXN];
    double distance(Node1 a,Node2 b)
    {
    double x=a.x-b.x;
    double y=a.y-b.y;

    return sqrt(x*x+y*y);
    }
    bool searchP()
    {
    queue
    <int>Q;
    dis
    =INF;
    memset(dx,
    -1,sizeof(dx));
    memset(dy,
    -1,sizeof(dy));
    for(int i=0;i<Nx;i++)
    if(Mx[i]==-1)
    {
    Q.push(i);
    dx[i]
    =0;
    }
    while(!Q.empty())
    {
    int u=Q.front();
    Q.pop();
    if(dx[u]>dis) break;
    for(int v=0;v<Ny;v++)
    if(g[u][v]&&dy[v]==-1)
    {
    dy[v]
    =dx[u]+1;
    if(My[v]==-1) dis=dy[v];
    else
    {
    dx[My[v]]
    =dy[v]+1;
    Q.push(My[v]);
    }
    }
    }
    return dis!=INF;
    }
    bool DFS(int u)
    {
    for(int v=0;v<Ny;v++)
    if(!vst[v]&&g[u][v]&&dy[v]==dx[u]+1)
    {
    vst[v]
    =1;
    if(My[v]!=-1&&dy[v]==dis) continue;
    if(My[v]==-1||DFS(My[v]))
    {
    My[v]
    =u;
    Mx[u]
    =v;
    return 1;
    }
    }
    return 0;
    }
    int MaxMatch()
    {
    int res=0;
    memset(Mx,
    -1,sizeof(Mx));
    memset(My,
    -1,sizeof(My));
    while(searchP())
    {
    memset(vst,
    0,sizeof(vst));
    for(int i=0;i<Nx;i++)
    if(Mx[i]==-1&&DFS(i)) res++;
    }
    return res;
    }

    int main()
    {
    //freopen("test.in","r",stdin);
    //freopen("test.out","w",stdout);
    int n,m,t,i,j;
    int T,iCase=0;
    scanf(
    "%d",&T);
    while(T--)
    {
    iCase
    ++;
    scanf(
    "%d",&t);
    scanf(
    "%d",&m);
    for(i=0;i<m;i++)
    scanf(
    "%d%d%d",&guests[i].x,&guests[i].y,&guests[i].s);
    scanf(
    "%d",&n);
    for(i=0;i<n;i++)
    scanf(
    "%d%d",&um[i].x,&um[i].y);
    Nx
    =m;Ny=n;
    memset(g,
    0,sizeof(g));
    for(i=0;i<m;i++)
    {
    for(j=0;j<n;j++)
    {
    if(distance(guests[i],um[j])/guests[i].s-t<eps)
    {
    g[i][j]
    =1;
    }
    }
    }
    printf(
    "Scenario #%d:\n%d\n\n",iCase,MaxMatch());
    }
    return 0;
    }

  • 相关阅读:
    列出python中可变数据类型和不可变数据类型,并简述原理
    python 字典操作
    Python的is和==
    python2和python3区别
    下面的代码在Python2中的输出是什么?解释你的答案
    编程用sort进行排序,然后从最后一个元素开始判断,去重
    如何在一个function里面设置一个全局的变量?
    用Python匹配HTML tag的时候,<.>和<.?>有什么区别?
    请写出一段Python代码实现删除一个list里面的重复元素
    什么是lambda函数?它有什么好处?
  • 原文地址:https://www.cnblogs.com/kuangbin/p/2135896.html
Copyright © 2020-2023  润新知