• RANSAC算法


    当由一堆存在误差的数据样本恢复数据模型时,通常最简单的线性回归方法是最小二乘,然而当数据样本中的误差数据的误差值和其所占比例比较大时,最小二乘得出的结果往往不如人意,RANSAC算法(随机抽样一致性算法)利用迭代来解决这个问题。

    定义:

    1. 称适应模型的点为“局内点”(inliers),相对的为“局外点”,数据集有“局内点”、“局外点”和噪声组成

    2. 模型可以由一些参数来描述

    3. 假设从数据集中给定一个很小的子集就可以存在一个模型,该模型适用于该子集内的所有点。

    RANSAC算法原理:

    1. 有一个模型适应于假设的局内点,即所有的未知参数都能从假设的局内点计算得出。

    2. 用1中得到的模型去测试所有的其它数据,如果某个点适用于估计的模型,认为它也是局内点。

    3. 如果有足够多的点被归类为假设的局内点,那么估计的模型就足够合理。然后,用所有假设的局内点去重新估计模型(譬如使用最小二乘法),因为它仅仅被初始的假设局内点估计过。

    4. 最后,通过估计局内点与模型的错误率来评估模型。

    上述过程被重复执行固定的次数,每次产生的模型要么因为局内点太少而被舍弃,要么因为比现有的模型更好而被选用。

    一个图示的例子更好的说明问题:

  • 相关阅读:
    微信小程序如何获取openid
    js经典试题之常用的方法
    js经典试题之运算符的优先级
    js如何使浏览器允许脚本异步加载
    es6从零学习(五):Module的语法
    es6从零学习(四):Class的继承
    js如何处理字符串中带有↵字符
    Zuul中聚合Swagger的坑
    阿里Sentinel支持Spring Cloud Gateway啦
    Spring Boot中的Mongodb多数据源扩展
  • 原文地址:https://www.cnblogs.com/konlil/p/2334492.html
Copyright © 2020-2023  润新知