• 课后作业3:个人项目(词频统计及其效能分析)


    基本信息

    **1. 博客开头给出自己的基本信息,格式建议如下:**   学号:2017*****7239;   姓名:王和旋;   码云项目仓库:[https://gitee.com/KONG520/word_frequency/tree/SE7239/](https://gitee.com/KONG520/word_frequency/tree/SE7239/)

    程序分析

    **2. 程序分析,对程序中的四个函数做简要说明。要求附上每一段代码及对应的说明。** 首先声明编码方式和导入string模块中的punctuation方法 ``` # -*- coding: UTF-8 -*- from string import punctuation ``` 1.读取文件函数--打开文件读入缓冲区并关闭文件 ``` def process_file(dst): # 读文件到缓冲区 try: # 打开文件 txt = open(dst, "r") except IOError, s: print s return None try: # 读文件到缓冲区 bvffer=txt.read() except: print "Read File Error!" return None txt.close() return bvffer ``` 2.数据处理--去除字符串中的符号将单词分割并读入字典。 ``` def process_buffer(bvffer): if bvffer: word_freq = {} # 下面添加处理缓冲区 bvffer代码,统计每个单词的频率,存放在字典word_freq for item in bvffer.strip().split(): word = item.strip(punctuation + ' ') if word in word_freq.keys(): word_freq[word] += 1 else: word_freq[word] = 1 return word_freq ``` 3.输出Top10结果--遍历字典并输出Top10的单词 ``` def output_result(word_freq): if word_freq: sorted_word_freq = sorted(word_freq.items(), key=lambda v: v[1], reverse=True) for item in sorted_word_freq[:10]: # 输出 Top 10 的单词 print(item) ``` 4.导入argparse库用于解析命令行数据,依次执行函数 ``` if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument('dst') args = parser.parse_args() dst = args.dst bvffer = process_file(dst) word_freq = process_buffer(bvffer) output_result(word_freq) ``` 在命令中输入```python word_freq.py Gone_with_the_wind.txt```运行代码 结果如下,输出了词频Top10的单词和次数: ![](https://img2018.cnblogs.com/blog/1329194/201903/1329194-20190327183058576-1237238208.png)

    性能分析与改进

    **3. 简单性能分析并改进、提交代码** 使用cProfile进行性能分析 ```python -m cProfile word_freq.py Gone_with_the_wind.txt``` 测试结果如下图(由于测试数据太多,只列举截图了关键信息,耗时最长,调用最多次数的函数): ![](https://img2018.cnblogs.com/blog/1329194/201903/1329194-20190327184153671-817211859.png)   上图显示有866682次函数调用,程序总共耗时370.584秒 ![](https://img2018.cnblogs.com/blog/1329194/201903/1329194-20190327184911631-1874487593.png) ![](https://img2018.cnblogs.com/blog/1329194/201903/1329194-20190327185151681-1455941333.png)   上图中标记的第3点字符串的strip函数被调用的次数最多--420147次,但花费总时间只用了0.603秒,暂不需要优化 而第1点函数process_buffer只被调用了1次却用的208.390秒,第3点字典中的key方法被调用了420146次,用时161.473秒   回到代码中发现process_buffer函数中的for循环内有一句if word in word_freq.keys(): 而遍历字典循环中每执行一次就要调用字典word_freq的keys()方法,但实际不需要再提取字典中的值(keys),直接判断word在字典word_freq中是否存在就可以了,所以去掉keys()方法,将代码修改为if word in word_freq: ![](https://img2018.cnblogs.com/blog/1329194/201903/1329194-20190327190444297-812688018.png) 再次进行性能分析,结果如下: ![](https://img2018.cnblogs.com/blog/1329194/201903/1329194-20190327191616676-600579185.png) 显示446536次函数调用共用了0.403秒,程序的函数调用次数和总运行时间明显减少.

    总结反思

    **4. 总结反思** 性能分析的意义:找到代码的性能瓶颈,将执行次数多和耗时长的代码优化,使得变换后的代码运行结果与变换前的代码运行结果相同,但执行速度加快或存储开销减少。 引用一段网上找到的话:   二八法则适合很多事物:最重要的只占其中一小部分,约20%,其余80%的尽管是多数,却是次要的。在程序代码中也是一样,决定应用性能的就那20%的代码(甚至更少)。因此优化实践中,我们将精力集中优化那20%最耗时的代码上,这那20%的代码就是程序的性能瓶颈,主要针对这部分代码进行优化。
    个性签名:夜空中最亮的星, 请指引我前行!
    如果觉得这篇文章对你有帮助的话, 记得在下面点个"推荐"哦~, 博主在此感谢!!!
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
  • 相关阅读:
    常用安卓开发技巧汇总
    安卓开发30:AsyncTask的用法
    JBoss AS7 快速配置
    抓包 把笔记本改造成无线路由器 —— 手机抓包牛刀小试
    Android系统手机端抓包方法
    ApkTool反编译apk,去除广告或者汉化后重新打包apk,并签名
    Android中如何像 360 一样优雅的杀死后台Service而不启动
    android service 的各种用法(IPC、AIDL)
    Android shell 下 busybox,clear,tcpdump、、众多命令的移植
    Servlet3.0中Servlet的使用
  • 原文地址:https://www.cnblogs.com/kongw/p/10607954.html
Copyright © 2020-2023  润新知