题目
Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers a and b on a blackboard. And then, the cows would say their identity number one by one. The first cow says the first number a and the second says the second number bb. After that, the ii-th cow says the sum of twice the (i−2)-th number, the (i−1)-th number, and i^4. Now, you need to write a program to calculate the number of the N-th cow in order to check if John’s cows can make it right.
Input
The first line of input contains an integer t, the number of test cases. tt test cases follow.
Each case contains only one line with three numbers N, aa and bb where N,a,b<2^31 as described above.
Output
For each test case, output the number of the NN-th cow. This number might be very large, so you need to output it modulo 2147493647.
In the first case, the third number is $85 = 21+2+3^4.Inthesecondcase,thethirdnumberis.Inthesecondcase,thethirdnumberis93 = 21+1*10+3^4andthefourthnumberisandthefourthnumberis369 = 2 * 10 + 93 + 4^4$.
题意
题目给出这样一个递推公式:
f(n)=f(n-2)*2+f(n-1)+n^ 4
f(1)=a,
f(2)=b;
给出n,a,b求f(n)%2147493647;
根据递推公式容易得出一个O(N)的暴力算法。但这题的数据范围为N,a,b<2^31 ,直接暴力肯定超时,要用O(1),O(lngn)或者是O(n^(1/2))的算法才有可能ac
观察这种递推公式,发现我们可以使用矩阵快速幂来计算,矩阵快速幂的复杂度是O(m^3 *lngn)m是矩阵的大小,复杂度很小可以一试。
矩阵快速幂是定义一个状态矩阵和一个转移矩阵,前一个状态矩阵乘转移矩阵可得到后一个状态矩阵。
这题和普通的矩阵快速幂有点区别,这题的递推函数在混合了一个变量n^4。
所以我们这题首先要考虑的就是,如何从n^4推出(n+1)^4,我们发现通过二项式定理可以得出,(n+1)^4=n^4+4n^3+6n^2+4n+1
这样就有f(n+1)=2*f(n-1)+f(n)+n^4+4n^3+6n^2+4n+1
不妨设状态矩阵F(n-1)=[f(n-1),f(n),n^4,4n^3,6n^2,4n,1]
若F(n)=F(N-1)*A 即[f(n),f(n+1),(n+1)^4,4(n+1)^3,6(n+1)^2,4(n+1),1]=[f(n-1),f(n),n^4,4n^3,6n^2,4n,1]*A
计算得A=
{0,2,0,0,0,0,0}
{1,1,0,0,0,0,0}
{0,1,1,0,0,0,0}
{0,1,1,1,0,0,0}
{0,1,1,2,1,0,0}
{0,1,1,3,3,1,0}
{0,1,1,4,6,4,1}
AC代码
#include<iostream> #include<algorithm> #include<cstring> #include<vector> #include<set> using namespace std; typedef long long ll; const ll mod=2147493647; ll n; void mul(ll f[7],ll a[7][7]){ ll c[7]; memset(c,0,sizeof(c)); for(ll j=0;j<7;j++) for(ll k=0;k<7;k++) c[j]=(c[j]+(ll)f[k]*a[k][j])%mod; memcpy(f,c,sizeof(c)); } void mulself(ll a[7][7]){ ll c[7][7]; memset(c,0,sizeof(c)); for(ll i=0;i<7;i++) for(ll j=0;j<7;j++) for(ll k=0;k<7;k++) c[i][j]=(c[i][j]+(ll)a[i][k]*a[k][j])%mod; memcpy(a,c,sizeof(c)); } int main(){ ll t,a,b; scanf("%lld",&t); while(t--){ scanf("%lld%lld%lld",&n,&a,&b); ll f[]={a,b,16,32,24,8,1}; ll a[][7]={ {0,2,0,0,0,0,0}, {1,1,0,0,0,0,0}, {0,1,1,0,0,0,0}, {0,1,1,1,0,0,0}, {0,1,1,2,1,0,0}, {0,1,1,3,3,1,0}, {0,1,1,4,6,4,1}, }; n--; for(;n;n>>=1){ if(n&1)mul(f,a); mulself(a); } printf("%lld ",f[0]); } }