LRU是Least Recently Used的缩写,即“最近最少使用”,说明LRU缓存算法的淘汰策略是把最近最少使用的数据移除,让出内存给最新读取的数据。下面看一下Android中的LruCache。
android.util.LruCache
这个LruCache在android.util包下,是API level 12引入的,对于API level 12之前的系统可以使用support library中的LruCache。先来看看android.util.LruCache的源码。
首先是成员变量:
private final LinkedHashMap<K, V> map;
/** Size of this cache in units. Not necessarily the number of elements. */
private int size;
private int maxSize;
private int putCount;
private int createCount;
private int evictionCount;
private int hitCount;
private int missCount;
LruCache内部使用一个LinkedHashMap作为存储容器,并对各种操作进行计次。
构造器:
public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}
构造器的参数maxSize用于指定缓存的最大容量,并初始化一个LinkedHashMap,顺便看看这个LinkedHashMap的构造函数:
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
super(initialCapacity, loadFactor);
init();
this.accessOrder = accessOrder;
}
initialCapacity即初始容量设为0,装填因子loadFactor设为0.75,accessOrder设为true,即链表中的元素按照最近最少访问到最多访问排序。这里设置的装填因子为0.75,设置其它值行不行呢?在LinkedHashMap这个构造器中只是将loadFactor作为参数传给了父类构造器,该父类构造器如下:
public HashMap(int capacity, float loadFactor) {
this(capacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new IllegalArgumentException("Load factor: " + loadFactor);
}
/*
* Note that this implementation ignores loadFactor; it always uses
* a load factor of 3/4. This simplifies the code and generally
* improves performance.
*/
}
调用了HashMap的构造器,可以看到只是对loadFactor进行了合法检查,除此之外没有其他调用或赋值操作,Note中解释了,这个loadFactor没用,装填因子永远使用3/4,也就是0.75。所以在构造LinkedHashMap时,设了装填因子也没什么用。
继续看LruCache,resize方法更新链表容量,调用trimToSize方法。
public void resize(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
synchronized (this) {
this.maxSize = maxSize;
}
trimToSize(maxSize);
}
先看get方法,key为空会抛异常,取出对应的value,若不为空则命中次数hitCount加1并return这个value,否则missCount加1。该value为空时继续向下执行,根据key尝试创建value,如果创建返回的createdValue是null,那就确实没有该值,若创建操作返回的createdValue不为null,则尝试把createdValue放回map,若存在旧值则返回旧值,否则返回这个createdValue。
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}
V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}
V createdValue = create(key);
if (createdValue == null) {
return null;
}
synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue);
if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
size += safeSizeOf(key, createdValue);
}
}
if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
trimToSize(maxSize);
return createdValue;
}
}
put方法将键值对放入map,重新计算大小之后调用trimToSize方法,删除访问次数最少的元素。
public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}
V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
if (previous != null) {
entryRemoved(false, key, previous, value);
}
trimToSize(maxSize);
return previous;
}
trimToSize方法中会一直尝试删除队首元素即访问次数最少的元素,直到size不超过最大容量。
public void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}
if (size <= maxSize) {
break;
}
Map.Entry<K, V> toEvict = map.eldest();
if (toEvict == null) {
break;
}
key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key, value);
evictionCount++;
}
entryRemoved(true, key, value, null);
}
}
android.support.v4.util.LruCache
support v4包中的LruCache可以用于API level 12之前的系统,和android.util包的LruCache的区别是在trimToSize中获取将要删除元素的方法不一样:
- android.util.LruCache
Map.Entry<K, V> toEvict = map.eldest();
- android.support.v4.util.LruCache
Map.Entry<K, V> toEvict = map.entrySet().iterator().next();
LinkedHashMap的eldest()方法已经被标注为@hide,所以使用android.support.v4.util.LruCache更加保险一点。
我的个人博客:http://kodyan.github.io/