• UMFPACK调用的接口



    在调用UMFPACK的过程中,只需要关心Ap Ai Ax的产生,实现其过程分为下面两种方法:

    (1)通过Eigen库,先让矩阵A以稀疏矩阵格式存储(知道矩阵A的非零元素的分布)

    View Code
    //#include <Eigen/Eigen>
    #include <Eigen/Sparse>
    //#include <umfpack.h>
    //#include <Eigen/src/UmfPackSupport/UmfPackSupport.h>
    //注意:只有debug版本调试
    //参考资料:科学计算中的偏微分方程有限差分法 张文生 高等教育出版社
    //                4.7节 边界条件的处理 4.7.2 Neumann边界 P155
    // 主要是形成Eigen中要求的稀疏矩阵 而非一般的二维数组
    #include <iostream>
    #include <vector>
    
    using namespace Eigen;
    
    using namespace std;
    
    typedef Eigen::SparseMatrix<double> SpMat; // declares a column-major sparse matrix type of double
    
    int main()
    {
            
        /*---以下几行作为测试用---*/
        Eigen::Vector2d v1, v2;     //Eigen中的变量
        v1 << 5, 6;   //默认的向量为列向量
        cout  << "v1 = " << endl << v1 << endl;
        v2 << 4, 5 ;
        Matrix2d result = v1*v2.transpose();
        cout << "result: " << endl << result << endl;
        cout<<"test----"<<7%int(3.0)<<endl;
        cout<<"Please input the dimension of the Matrix----( N)!"<<endl;
        int N=9;
    
        SpMat A(N,N); 
        typedef Eigen::Triplet<double> Tri;
        vector<Tri> coefficients;
        //coefficients.push_back(Tri(0,0,2.0));
        for(int i=0;i<sqrt( double(N) );i++)
            coefficients.push_back(Tri(i,i,1.0));
        for(int i=int(sqrt( double(N) ));i<N-sqrt( double(N) );i++)
        {
            if(i%int(sqrt( double(N) ))==0) //B矩阵中的首行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i+1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-1.0));
                coefficients.push_back(Tri(i,i+int(sqrt(double(N))),-1.0));
            }
            else if((i-(int(sqrt(double(N)))-1))%int(sqrt( double(N) ))==0) //B矩阵中的末行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-1.0));
                coefficients.push_back(Tri(i,i+int(sqrt(double(N))),-1.0));
            }
            else //B矩阵的中间行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-1.0));
                coefficients.push_back(Tri(i,i+1,-1.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-1.0));
                coefficients.push_back(Tri(i,i+int(sqrt(double(N))),-1.0));
            }
        }
        for(int i=N-int(sqrt( double(N) ));i<N;i++)
        {
            if(i==N-int(sqrt( double(N) ))) //B矩阵中的首行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i+1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-2.0));
            }
            else if(i==N-1) //B矩阵中的末行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-2.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-2.0));
            }
            else //B矩阵的中间行
            {
                coefficients.push_back(Tri(i,i,4.0));
                coefficients.push_back(Tri(i,i-1,-1.0));
                coefficients.push_back(Tri(i,i+1,-1.0));
                coefficients.push_back(Tri(i,i-int(sqrt(double(N))),-2.0));
            }
        }
    
        A.setFromTriplets(coefficients.begin(),coefficients.end());
        cout<<endl;
        int _index=A.nonZeros();
        cout<<_index<<endl;
        
        int n=A.cols();
        int *Ap=new int[n+1];
        Ap[0]=0;
        int num=A.nonZeros();
        int *Ai=new int[num];
        double *Ax=new double[num];
    
        int k=0;
        for(int i=0;i<A.outerSize();i++)
        {
            Ap[i+1]=Ap[i];
            for (Eigen::SparseMatrix<double>::InnerIterator it(A,i); it; ++it)
            {
                Ax[k]=it.value();
                
                Ai[k]=it.row();
                //cout<<Ai[k]<<" ";
                k++;
                Ap[i+1]++;
            }
            cout<<Ap[i]<<" ";
        }
    cout<<Ap[A.outerSize()]<<" ";
    
        return 0;
    }

    (2)矩阵A为二维数组

    View Code
    //Data:2013-2-24
    //修改了Ai Ax的类型 利用最大维数n*n来保存,可以调用正确结果 不过不知系统随机分配的值 函数没有用
    //Data:2013-2-26
    //调用UMFPACK包来实现求解方程组
    //UMFPACK采用CSC(列压缩存储) matlab中的接口为A/b
    #include <stdio.h>
    #include <math.h>
    #include "umfpack.h"
    //传递的四个参数A b x n -----Data:2013-02-27
    //意思为Ax=b n为矩阵维数
    int umf(double **A,double *b,double *x,int n)
    {
        //printf("--");
        //printf("%d \n",A[1][1]);
        // int n=5;
        double *null =(double *)NULL ;
        void *Symbolic, *Numeric ;
        int i,j;
    
    /*    
        //定义矩阵A
        int **A=new int *[n];
        for(j=0;j<n;j++)
            A[j]= new int[n];
    
        for(i=0;i<n;i++)
            for(j=0;j<n;j++)
                scanf("%d",&A[i][j]);
    */
    
        int *Ap=new int [n+1];
        Ap[0]=0;
    
       /* int *Ai=new int[n*n];
        for(i=0;i<n*n;i++)
            Ai[i]=1;
        double *Ax=new double[n*n];
        for(i=0;i<n*n;i++)
            Ax[i]=1;*/
        double epsilon=0.00001;
        int NZnum=0;//矩阵非零元的个数
    
        int k=0,l=0,m=0;
        for(j=0;j<n;j++)
        {
            for(i=0;i<n;i++)
            {
                if(abs(A[i][j])>epsilon)
                {
                 /*   Ai[l++]=i;
                    Ax[m++]=A[i][j];*/
    
    
                    NZnum++;
                }
            }
            Ap[k+1]=NZnum;
            k++;
        }
        Ap[n]=NZnum;
    
         int *Ai=new int[NZnum];
        double *Ax=new double[NZnum];
    
        // int k=0,l=0,m=0;
        for(j=0;j<n;j++)
        {
            for(i=0;i<n;i++)
            {
                if(abs(A[i][j])>epsilon)
                {
                    Ai[l++]=i;
                    Ax[m++]=A[i][j];
                }
            }
        }
    
        //printf("--Ai---\n");
        //for (int i=0; i<n*n; i++)
        //{
        //    printf("%d ", Ai[i]);
        //}
        //printf("\n");
        
        umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, null, null);
        umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, null, null) ;
        umfpack_di_free_symbolic (&Symbolic);
        umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, null, null);
        umfpack_di_free_numeric (&Numeric) ;
    
        //for(i=0;i<n;i++) 
        //    printf("x[%d]=%g\n", i, x[i]) ;
        return 0;
    }

    后面会测试那种速度较快。

  • 相关阅读:
    交易盈利核心
    tbquant 两个画线函数的说明
    胜率40% 盈亏2:1 交易策略源码
    Apache是如何运作的
    JSON_UNESCAPED_UNICODE的作用与理解
    Python的装饰器是什么?
    Python中的浅拷贝、深拷贝和赋值之间有什么区别?
    Python面试题——基础篇
    GD32F30x_ADC电压采集(规则并行+DMA方式)
    GD32F30x_定时器输出比较模式输出方波(DMA方式)
  • 原文地址:https://www.cnblogs.com/kmliang/p/2958852.html
Copyright © 2020-2023  润新知