• [POI2014]KAR-Cards


    题目链接:

    传送门

    题目分析:

    线段树妙题,感觉思路奇奇怪怪的,虽然对我来说不是“线段树菜题”((ldx)神仙(blog)原话)(QAQ)
    考虑怎么样维护可合并的信息解决这道题

    首先有一个很明显的贪心,一张卡片正反面肯定是能小就小,不带修的话直接就过了
    带修的话怎么处理呢,考虑在线段树上维护一个(sum[0/1]),表示这个节点(l)位置上卡片选正/反面的时候(r)位置上卡片的最小取值,不合法赋(INF)
    重点在(pushup)里面,每次(pushup)的时候把左子区间维护的两个(sum)分别和右子区间左端点的两个值比较一下看合不合法,不合法赋(INF)(感觉说的不是很清楚,自己脑补一下(or)看代码可能会好懂一点
    每次交换可以看做单点修改

    代码:

    #include<bits/stdc++.h>
    #define N (300000 + 10)
    using namespace std;
    inline int read() {
    	int cnt = 0, f = 1; char c = getchar();
    	while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
    	while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
    	return cnt * f;
    }
    const int INF = 1000000000 + 7;
    int n, m;
    int x, y;
    int a[N], b[N];
    struct node {
    	int l, r, sum[2];
    	#define l(p) tree[p].l
    	#define r(p) tree[p].r
    	#define sum0(p) tree[p].sum[0]
    	#define sum1(p) tree[p].sum[1]
    }tree[N << 2];
    void pushup(int p) {
    	sum0(p) = sum1(p) = INF;
    	if (sum0(p << 1) <= a[l(p << 1 | 1)]) sum0(p) = sum0(p << 1 | 1); 
    	if (sum0(p << 1) <= b[l(p << 1 | 1)]) sum0(p) = min(sum0(p), sum1(p << 1 | 1));
    	if (sum1(p << 1) <= a[l(p << 1 | 1)]) sum1(p) = sum0(p << 1 | 1);
    	if (sum1(p << 1) <= b[l(p << 1 | 1)]) sum1(p) = min(sum1(p), sum1(p << 1 | 1));
    }
    void build(int p, int l, int r) {
    	l(p) = l, r(p) = r;
    	if (l == r) {sum0(p) = a[l], sum1(p) = b[l]; return;}
    	int mid = (l + r) >> 1;
    	build (p << 1, l, mid);
    	build (p << 1 | 1, mid + 1, r);
    	pushup(p);
    }
    void modify(int p, int x, int u, int v) {
    	if (u > v) swap(u, v);
    	if (l(p) == r(p)) {sum0(p) = a[l(p)] = u, sum1(p) = b[l(p)] = v; return;}
    	int mid = (l(p) + r(p)) >> 1;
    	if (x <= mid) modify(p << 1, x, u, v);
    	else modify(p << 1 | 1, x, u, v);
    	pushup(p);
    }
    int cura, curb;
    int main() {
    	n = read();
    	for (register int i = 1; i <= n; i++) {
    		a[i] = read(), b[i] = read();
    		if (a[i] > b[i]) swap(a[i], b[i]);
    	}
    	build(1, 1, n);
    	m = read();
    	for (register int i = 1; i <= m; i++) {
    		x = read(), y = read();
    		cura = a[x], curb = b[x];
    		modify(1, x, a[y], b[y]), modify(1, y, cura, curb);
    		if (sum0(1) == INF && sum1(1) == INF) printf("NIE
    ");
    		else printf("TAK
    ");
    	}
    	return 0;
    }
    
  • 相关阅读:
    UI5-技术篇-Hybrid App-1-Barcode扫描
    UI5-技术篇-How to Extend Fiori Applications
    UI5-技术篇-事务Tcode
    UI5-技术篇-SAPUI5创建自定义控件
    ABAP-信息结构S901/S902程序问题
    ABAP-会计凭证替代字段GB01设置
    UI5-技术篇-Navigation And Routing
    前后端分离djangorestframework—— 接入微信模板消息推送
    前后端分离djangorestframework—— 接入支付宝支付平台
    前后端分离djangorestframework—— 接入第三方的验证码平台
  • 原文地址:https://www.cnblogs.com/kma093/p/11461563.html
Copyright © 2020-2023  润新知