• codeforces 600E . Lomsat gelral (线段树合并)


    You are given a rooted tree with root in vertex 1. Each vertex is coloured in some colour.

    Let's call colour c dominating in the subtree of vertex v if there are no other colours that appear in the subtree of vertex v more times than colour c. So it's possible that two or more colours will be dominating in the subtree of some vertex.

    The subtree of vertex v is the vertex v and all other vertices that contains vertex v in each path to the root.

    For each vertex v find the sum of all dominating colours in the subtree of vertex v.

    Input

    The first line contains integer n (1 ≤ n ≤ 105) — the number of vertices in the tree.

    The second line contains n integers ci (1 ≤ ci ≤ n), ci — the colour of the i-th vertex.

    Each of the next n - 1 lines contains two integers xj, yj (1 ≤ xj, yj ≤ n) — the edge of the tree. The first vertex is the root of the tree.

    Output

    Print n integers — the sums of dominating colours for each vertex.

    Examples
    input
    Copy
    4
    1 2 3 4
    1 2
    2 3
    2 4
    output
    Copy
    10 9 3 4
    input
    Copy
    15
    1 2 3 1 2 3 3 1 1 3 2 2 1 2 3
    1 2
    1 3
    1 4
    1 14
    1 15
    2 5
    2 6
    2 7
    3 8
    3 9
    3 10
    4 11
    4 12
    4 13
    output
    Copy
    6 5 4 3 2 3 3 1 1 3 2 2 1 2 3

    思路:

    对每个点建线段树在线段树上当前点的权值下标+1,每个点与父节点进行线段树合并,这样对树dfs一遍就可以求出所有的值了。

    实现代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    #define mid ll m = (l + r) >> 1
    const ll M = 1e5 + 10;
    
    struct node{
        ll ans,sum;
    }tr[M*40];
    
    struct node1{
        ll to,next;
    }e[M<<1];
    ll cnt,head[M],idx,ls[M*40],rs[M*40],root[M],a[M],ans[M];
    
    void add(ll u,ll v){
        e[++cnt].to = v;e[cnt].next = head[u];head[u] = cnt;
    }
    
    void pushup(ll rt){
        if(tr[ls[rt]].sum > tr[rs[rt]].sum){
            tr[rt].sum = tr[ls[rt]].sum;
            tr[rt].ans = tr[ls[rt]].ans;
        }
        else if(tr[ls[rt]].sum == tr[rs[rt]].sum){
            tr[rt].sum = tr[ls[rt]].sum;
            tr[rt].ans = tr[rs[rt]].ans + tr[ls[rt]].ans;
        }
        else{
            tr[rt].sum = tr[rs[rt]].sum;
            tr[rt].ans = tr[rs[rt]].ans;
        }
    }
    
    void update(ll p,ll c,ll l,ll r,ll &rt){
        if(!rt) rt = ++idx;
        if(l == r){
            tr[rt].sum += c;
            tr[rt].ans = l;
            return ;
        }
        mid;
        if(p <= m) update(p,c,l,m,ls[rt]);
        else update(p,c,m+1,r,rs[rt]);
        pushup(rt);
    }
    
    ll Merge(ll x,ll y,ll l,ll r){
        if(!x) return y;
        if(!y) return x;
        if(l == r){
            tr[x].sum += tr[y].sum;
            tr[x].ans = l;
            return x;
        }
        mid;
        ls[x] = Merge(ls[x],ls[y],l,m);
        rs[x] = Merge(rs[x],rs[y],m+1,r);
        pushup(x);
        return x;
    }
    
    void dfs(ll u,ll fa){
        for(ll i = head[u];i;i=e[i].next){
            ll v = e[i].to;
            if(v == fa) continue;
            dfs(v,u);
            Merge(root[u],root[v],1,M);
        }
        update(a[u],1,1,M,root[u]);
        ans[u] = tr[root[u]].ans;
    }
    
    int main()
    {
        ll n,u,v;
        scanf("%lld",&n);
        for(ll i = 1;i <= n;i ++){
            scanf("%lld",&a[i]);
            root[i] = i;
            idx++;
        }
        for(ll i = 1;i < n;i ++){
            scanf("%lld%lld",&u,&v);
            add(u,v); add(v,u);
        }
        dfs(1,0);
        for(ll i = 1;i <= n;i ++){
            printf("%lld ",ans[i]);
        }
        return 0;
    
    }
  • 相关阅读:
    最快速的Android开发环境搭建ADT-Bundle及Hello World
    android sdk manager 无法更新解决方法
    ADO.NET 新特性之SqlBulkCopy
    WCF错误:413 Request Entity Too Large
    构建高性能的ASP.NET应用程序
    编写高性能Web应用程序的10个技巧
    很不错的jQuery学习资料和实例
    学习jQuery之旅
    50个常用的JQuery代码
    机器学习瓶颈
  • 原文地址:https://www.cnblogs.com/kls123/p/9972034.html
Copyright © 2020-2023  润新知