• CodeForces


    C. Pythagorean Triples
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theorem. It appeared, that there are triples of positive integers such that you can construct a right triangle with segments of lengths corresponding to triple. Such triples are called Pythagorean triples.

    For example, triples (3, 4, 5), (5, 12, 13) and (6, 8, 10) are Pythagorean triples.

    Here Katya wondered if she can specify the length of some side of right triangle and find any Pythagorean triple corresponding to such length? Note that the side which length is specified can be a cathetus as well as hypotenuse.

    Katya had no problems with completing this task. Will you do the same?

    Input

    The only line of the input contains single integer n (1 ≤ n ≤ 109) — the length of some side of a right triangle.

    Output

    Print two integers m and k (1 ≤ m, k ≤ 1018), such that nm and k form a Pythagorean triple, in the only line.

    In case if there is no any Pythagorean triple containing integer n, print  - 1 in the only line. If there are many answers, print any of them.

    Examples
    input
    Copy
    3
    output
    4 5
    input
    Copy
    6
    output
    8 10
    input
    Copy
    1
    output
    -1
    input
    Copy
    17
    output
    144 145
    input
    Copy
    67
    output
    2244 2245
    Note

    思路:

    直接跑表:

    #include<bits/stdc++.h>
    using namespace std;
    
    int main()
    {
        for(int i = 1;i <= 100;i ++){
            for(int j = 1;j <= 1000;j++){
                for(int k = j;k <= 1000;k ++){
                    if(i*i==j*j+k*k||i*i==j*j-k*k||i*i==k*k-j*j){
                        cout<<i<<" "<<j<<" "<<k<<endl;
                    }
                }
            }
        }
    }

    跑出:

    由上面的代码可以看出:

    如:

    3 4 5

    4 3 5

    5 12 13

    6 8 10

    奇数都存在一对只相差1的两边,偶数都存在一条相差为2的两边。

    然后脑补了一下规律:

    偶数为: n*n/4 -1, n*n/4+1

    奇数为: n*(n+1)/2 , n*(n+1)+1

    然后就过了。。。

    实现代码:

    #include<bits/stdc++.h>
    using namespace std;
    #define ll long long
    int main()
    {
        ll n;
        cin>>n;
        if(n <= 2)
            cout<<-1<<endl;
        else if((n/2)*2==n){
            cout<<n*n/4-1<<" "<<n*n/4+1<<endl;
        }
        else{
            cout<<(n/2)*(n+1)<<" "<<(n/2)*(n+1)+1<<endl;
        }
    }
  • 相关阅读:
    获取N年,N月,N日后或者前的日期函数
    ABAP 上传图片
    SF 小技巧
    针式打印机问题
    ABAP 捕获回车键
    md04 取数函数
    根据选择屏幕创建12个月份
    php isset 的作用
    php 指针概念 指针引用
    php中global与$GLOBALS的用法及区别
  • 原文地址:https://www.cnblogs.com/kls123/p/8552427.html
Copyright © 2020-2023  润新知