前置要求:
1)Building Spark using Maven requires Maven 3.3.9 or newer and Java 7+
2)export MAVEN_OPTS="-Xmx2g -XX:ReservedCodeCacheSize=512m"
mvn编译命令:
./build/mvn -Pyarn -Phadoop-2.4 -Dhadoop.version=2.4.0 -DskipTests clean package
前提:需要对maven有一定的了解(pom.xml)
<properties>
<hadoop.version>2.2.0</hadoop.version>
<protobuf.version>2.5.0</protobuf.version>
<yarn.version>${hadoop.version}</yarn.version>
</properties>
<profile>
<id>hadoop-2.6</id>
<properties>
<hadoop.version>2.6.4</hadoop.version>
<jets3t.version>0.9.3</jets3t.version>
<zookeeper.version>3.4.6</zookeeper.version>
<curator.version>2.6.0</curator.version>
</properties>
</profile>
./build/mvn -Pyarn -Phadoop-2.6 -Phive -Phive-thriftserver -Dhadoop.version=2.6.0-cdh5.7.0 -DskipTests clean package
#推荐使用
./dev/make-distribution.sh --name 2.6.0-cdh5.7.0 --tgz -Pyarn -Phadoop-2.6 -Phive -Phive-thriftserver -Dhadoop.version=2.6.0-cdh5.7.0
编译完成后:
spark-$VERSION-bin-$NAME.tgz
spark-2.1.0-bin-2.6.0-cdh5.7.0.tgz
Spark Standalone模式的架构和Hadoop HDFS/YARN很类似的
1 master + n worker
spark-env.sh
SPARK_MASTER_HOST=hadoop001
SPARK_WORKER_CORES=2
SPARK_WORKER_MEMORY=2g
SPARK_WORKER_INSTANCES=1
hadoop1 : master
hadoop2 : worker
hadoop3 : worker
hadoop4 : worker
...
hadoop10 : worker
slaves:
hadoop2
hadoop3
hadoop4
....
hadoop10
==> start-all.sh 会在 hadoop1机器上启动master进程,在slaves文件配置的所有hostname的机器上启动worker进程
Spark WordCount统计
val file = spark.sparkContext.textFile("file:///home/hadoop/data/wc.txt")
val wordCounts = file.flatMap(line => line.split(",")).map((word => (word, 1))).reduceByKey(_ + _)
wordCounts.collect