• loj 6277 6280 数列分块入门 1 4


    参考:「分块」数列分块入门1 – 9 by hzwer

    1

    Description

    给出一个长为(n)的数列,以及(n)个操作,操作涉及区间加法,单点查值

    思路

    (tag)记录每个块整体的增量。

    Code

    #include <bits/stdc++.h>
    #define maxn 50010
    #define F(i, a, b) for (int i = (a); i < (b); ++i)
    #define F2(i, a, b) for (int i = (a); i <= (b); ++i)
    #define dF(i, a, b) for (int i = (a); i > (b); --i)
    #define dF2(i, a, b) for (int i = (a); i >= (b); --i)
    using namespace std;
    typedef long long LL;
    int n, blo, a[maxn], tag[maxn], bl[maxn];
    void add(int l, int r, int c) {
        F2(i, l, min((bl[l]+1)*blo-1, r)) a[i] += c;
        if (bl[l] != bl[r]) {
            F2(i, bl[r]*blo, r) a[i] += c;
        }
        F2(i, bl[l]+1, bl[r]-1) tag[i] += c;
    }
    int main() {
        scanf("%d", &n); blo = sqrt(n);
        F(i, 0, n) scanf("%d", &a[i]), bl[i] = i / blo;
        F(i, 0, n) {
            int op, l, r, c;
            scanf("%d%d%d%d", &op, &l, &r, &c); --l, --r;
            if (op) printf("%d
    ", a[r]+tag[bl[r]]);
            else add(l, r, c);
        }
        return 0;
    }
    
    

    4

    Description

    给出一个长为(n)的数列,以及(n)个操作,操作涉及区间加法,区间求和。

    思路

    法一:树状数组

    (delta)差分数组:(delta[i])记录([i,n])整体的增量。

    则$$egin{aligned}sum[x]&=sum_{i=1}{x}a_i+sum_{i=1}{x}d_i(x-i+1)&=sum_{i=1}{x}a_i+(x+1)*sum_{i=1}{x}d_i-sum_{i=1}^{x}id_iend{aligned}$$

    维护三个树状数组即可。

    法二:分块

    (tag)记录每个块整体的增量。

    (sum)维护每个块的和。

    Code

    Ver. 1

    #include <bits/stdc++.h>
    #define maxn 50010
    #define F(i, a, b) for (LL i = (a); i < (b); ++i)
    #define F2(i, a, b) for (LL i = (a); i <= (b); ++i)
    #define dF(i, a, b) for (LL i = (a); i > (b); --i)
    #define dF2(i, a, b) for (LL i = (a); i >= (b); --i)
    using namespace std;
    typedef long long LL;
    LL n, x, v[maxn], d[maxn], D[maxn];
    inline LL lowbit(LL x) { return x & (-x); }
    inline LL sum(LL* a, LL x, LL mod) { LL ret = 0; while (x) (ret += a[x]) %= mod, x -= lowbit(x); return ret; }
    inline void add(LL* a, LL x, LL c) { while (x<=n) a[x] += c, x += lowbit(x); }
    inline LL query(LL x, LL mod) {
        return ((sum(v, x, mod) + (x+1) * sum(d, x, mod) % mod) % mod + mod - sum(D, x, mod)) % mod;
    }
    inline void modify(LL l, LL r, LL c) {
        add(d, l, c), add(d, r+1, -c);
        add(D, l, c*l), add(D, r+1, -c*(r+1));
    }
    int main() {
        scanf("%lld", &n);
        F2(i, 1, n) scanf("%lld", &x), add(v, i, x);
        F(i, 0, n) {
            LL op, l, r, c, mod;
            scanf("%lld%lld%lld%lld", &op, &l, &r, &c); mod=c+1;
            if (op) printf("%lld
    ", (query(r,mod)+mod-query(l-1,mod))%mod);
            else modify(l, r, c);
        }
        return 0;
    }
    
    

    Ver. 2

    #include <bits/stdc++.h>
    #define maxn 50010
    #define F(i, a, b) for (LL i = (a); i < (b); ++i)
    #define F2(i, a, b) for (LL i = (a); i <= (b); ++i)
    #define dF(i, a, b) for (LL i = (a); i > (b); --i)
    #define dF2(i, a, b) for (LL i = (a); i >= (b); --i)
    using namespace std;
    typedef long long LL;
    LL blo, a[maxn], bl[maxn], sum[maxn], tag[maxn];
    void modify(LL l, LL r, LL c) {
        F(i, l, min((bl[l]+1)*blo, r+1)) a[i] += c;
        sum[bl[l]] += c * (min((bl[l]+1)*blo,r+1) - l);
        if (bl[l]!=bl[r]) {
            F2(i, bl[r]*blo, r) a[i] += c;
            sum[bl[r]] += c * (r+1 - bl[r]*blo);
        }
        F(i, bl[l]+1, bl[r]) tag[i] += c, sum[i] += c * blo;
    }
    LL query(LL l, LL r, LL mod) {
        LL ret=0;
        F(i, l, min((bl[l]+1)*blo, r+1)) (ret += a[i]) %= mod;
        (ret += tag[bl[l]] * (min((bl[l]+1)*blo,r+1) - l) % mod) %= mod;
        if (bl[l] != bl[r]) {
            F2(i, bl[r]*blo, r) (ret += a[i]) %= mod;
            (ret += tag[bl[r]] * (r+1 - bl[r]*blo) % mod) %= mod;
        }
        F(i, bl[l]+1, bl[r]) (ret += sum[i]) %= mod;
        return ret;
    }
    int main() {
        LL n;
        scanf("%lld", &n); blo = sqrt(n);
        F(i, 0, n) scanf("%lld", &a[i]), bl[i] = i/blo;
        LL num = (n+blo-1) / blo;
        F(i, 0, num-1) {
            F(j, i*blo, (i+1)*blo) sum[i] += a[j];
        }
        F(j, (num-1)*blo, min(num*blo, n+1)) sum[num-1] += a[j];
        F(i, 0, n) {
            LL op, l, r, c;
            scanf("%lld%lld%lld%lld", &op, &l, &r, &c); --l, --r;
            if (op) printf("%lld
    ", query(l, r, c+1));
            else modify(l, r, c);
        }
        return 0;
    }
    
    
  • 相关阅读:
    java发送qq邮件
    HTTP3次握手和4次挥手
    Bootstrap面试题
    Bootstrap
    响应式布局
    JQuery思维导图
    JQuery相关知识点和面试题
    CSS思维导图
    前端面试题
    CSS3实现跑马效果
  • 原文地址:https://www.cnblogs.com/kkkkahlua/p/8446317.html
Copyright © 2020-2023  润新知