• AtCoder Regular Contest 075 C D E (暂时)


    C - Bugged

    题意

    (n)个数,找其中的一个子集,使得其和最大,且不是(10)的整数倍。

    思路

    先对(n)个数求和,

    1. 如果本身即不被(10)整除,则即为答案。
    2. 否则,如果本身被(10)整除,则找到这(n)个数中最小的不被(10)整除的数,减去它即为答案。
    3. 如果不存在这样的数,说明所有的数都被(10)整除,所以答案为(0).

    回顾上述过程,可以发现,这个子集的(size)要么是(0),要么是(n-1),要么是(n).

    解题无关部分

    结论

    满足条件的子集的(size)要么是(0),要么是(n-1),要么是(n)

    证明

    1. (size=0,n)的情况显然

    2. 对于其余情况,即(10mid sum_{i=1}^{n}a_i)(exists a_i,10 mid a_i)
      假设存在一个(size=n-k(kgt 1))的子集,那么(10 mid (sum0=sum_{i=1}^{n-k}a_i)而10mid (sum=sum_{i=1}^{n}a_i)),因而(10 mid sum_{i=n-k+1}^{n}a_i)

    因为(kgt 1),所以(sum_{i=n-k+1}^{n}a_i=sum_{i=n-k+1}^{n-1}a_i+a_n=A+B),因为(10 mid (A+B)),所以(A,B)中至少存在一个不被(10)整除。

    (Case 1.) (10mid A, 10 mid B)
    则有(10 mid (sum0+A)=sum_{i=1}^{n-1}a_i),即为一个(size=n-1)的子集

    (Case 2.) (10 mid A, 10mid B)
    则有(10 mid (sum0+B)=sum_{i=1}^{n-k}a_i+a_n),即得到一个(size=n-k+1)的子集,变成原问题的子问题,可在此基础上继续操作直至得到一个(size=n-1)的子集。

    (Case 3.) (10 mid A, 10 mid B)
    在此条件下,必然有(10 mid (sum0+A)且10 mid (sum0+B))
    (否则,如果(10mid (sum0+A)),而又有条件(10 mid B),因而(10 mid (sum0+A+B)=sum)与题设矛盾;
    如果(10mid (sum0+B))同理)
    因而,可以做出与(Case. 1)中相同的选择,取(10 mid (sum0+A))这个(size=n-1)的子集,即满足要求。

    Code

    #include <bits/stdc++.h>
    #define maxn 110
    using namespace std;
    typedef long long LL;
    int a[maxn];
    int main() {
        int n;
        scanf("%d", &n);
        int sum=0;
        for (int i = 0; i < n; ++i) scanf("%d", &a[i]), sum += a[i];
        sort(a,a+n);
        if (sum % 10) printf("%d
    ", sum);
        else {
            int i=0;
            for (; i < n; ++i) if (a[i] % 10) break;
            if (i == n) puts("0");
            else printf("%d
    ", sum-a[i]);
        }
        return 0;
    }
    
    

    D - Widespread

    题意

    (n)个小怪,每个小怪都有血量(h_i). 攻击某一个小怪,可对它造成(A)的伤害,对其他所有小怪造成(B)的伤害((Agt B))。问最少攻击多少次能消灭所有小怪。

    思路

    假设一共攻击了(k)次,攻击过(p)个小怪(攻击第(i)个小怪(t_i)次),则有$$k=t_1+t_2+...+t_p$$
    对第(i)个小怪造成的伤害为$$(k-t_i)B+t_iA=kB+(A-B)t_i$$显见血越厚需要花费的(t_i)就越多。

    因此,可以二分攻击次数(k)(check)的标准是(sum_{}t_i)是否小于等于(k).

    Code

    #include <bits/stdc++.h>
    #define maxn 100010
    using namespace std;
    typedef long long LL;
    int n, A, B;
    int a[maxn];
    bool check(LL k) {
        LL base = k * B, diff = A - B, sum = 0;
        for (int i = n-1; i >= 0; --i) {
            if (a[i] <= base) continue;
            sum += ceil(1.0 * (a[i] - base) / diff);
        }
        return sum <= k;
    }
    int main() {
        scanf("%d%d%d", &n, &A, &B);
        LL ri = 0;
        for (int i = 0; i < n; ++i) scanf("%d", &a[i]), ri += a[i]/B+1;
        sort(a, a+n);
    
        LL le = 1;
        while (ri > le) {
            LL mid = le + ri >> 1;
            if (check(mid)) ri = mid;
            else le = mid + 1;
        }
        printf("%lld
    ", le);
        return 0;
    }
    
    

    E - Meaningful Mean

    题意

    给定一个数组(a[ ])与一个数字(k),问有多少对((l,r))满足$$frac{sum_{i=l}^{r}a[i]}{r-l+1}geq k$$即问有多少子段的平均数(geq k)

    思路

    转化

    将数组中每一个数都减去(k),则问题转化为有多少段数的和(geq 0)

    树状数组

    处理出前缀和,再用树状数组进行统计(思想类似逆序对个数)。

    (sum[l,r] = Sum[r] - Sum[l-1]),因此前缀和应包括(0)

    Code

    #include <bits/stdc++.h>
    #define maxn 200010
    using namespace std;
    typedef long long LL;
    LL c[maxn], a[maxn], b[maxn];
    int n, k, tot;
    int lowbit(int x) { return x & (-x); }
    LL query(int x) { LL ret=0; while (x) ret += c[x], x -= lowbit(x); return ret; }
    void add(int x) { while (x <= tot) ++c[x], x += lowbit(x); }
    int main() {
        scanf("%d%d", &n, &k);
        for (int i = 1; i <= n; ++i) scanf("%lld", &a[i]), a[i] -= k;
        for (int i = 1; i <= n; ++i) b[i] = (a[i] += a[i-1]);
        b[n+1] = 0;
        sort(b+1, b+2+n);
        tot = unique(b+1, b+2+n) - (b+1);
    
        LL ans=0;
        a[0] = 0;
        for (int i = 0; i <= n; ++i) {
            int p = lower_bound(b+1, b+1+tot, a[i]) - b;
            ans += query(p);
            add(p);
        }
        printf("%lld
    ", ans);
        return 0;
    }
    
    
  • 相关阅读:
    我的第一个NHibernate示例
    Div+CSS实现表格滚动,JS隐藏和显示Div例子
    VUE 生命周期
    sql AND和OR
    vcloak 隐藏表达式
    sql 多表联查
    SQL 语句解析
    jenkins 使用
    sql 排序(order by)
    sql 基础查询
  • 原文地址:https://www.cnblogs.com/kkkkahlua/p/7796404.html
Copyright © 2020-2023  润新知