• hdu 5950 Recursive sequence 递推式 矩阵快速幂


    题目链接

    题意

    给定(c_0,c_1,求c_n(c_0,c_1,nlt 2^{31})),递推公式为

    [c_i=c_{i-1}+2c_{i-2}+i^4 ]

    思路

    参考

    将递推式改写$$egin{pmatrix}f(n)f(n-1) 4 3 2 1end{pmatrix}=egin{pmatrix}1&2&1&4&6&4&11&0&0&0&0&0&0&0&1&4&6&4&1&0&0&1&3&3&1&0&0&0&1&2&1&0&0&0&0&1&1&0&0&0&0&0&1end{pmatrix}egin{pmatrix}f(n-1)f(n-2)(n-1)4(n-1)3(n-1)2(n-1)1end{pmatrix}$$

    然后上矩阵快速幂。

    // 一开始令(d_i=c_i-2c_{i-1}),推出了一个(d_i=(-1)^{i-2}(d_2-15)+frac{1}{2}i^4+i^3-frac{1}{2}i),虽然接下来也好做但挺烦且容易算错。一上来就应该往矩阵快速幂的方向去想的。

    Code

    #include <bits/stdc++.h>
    #define N 7
    using namespace std;
    typedef long long LL;
    const LL mod = 2147493647;
    typedef struct {
        LL mat[N][N];
        void init(LL x){
            memset(mat, 0, sizeof(mat));
            for(int i=0; i<N; i++) mat[i][i] = x;
        }
        void print() const {
            for (int i = 0; i < N; ++i) {
                for (int j = 0; j < N; ++j) printf("%lld ", mat[i][j]); printf("
    ");
            }
        }
    } Matrix;
    Matrix p = {1,2,1,4,6,4,1,
                1,0,0,0,0,0,0,
                0,0,1,4,6,4,1,
                0,0,0,1,3,3,1,
                0,0,0,0,1,2,1,
                0,0,0,0,0,1,1,
                0,0,0,0,0,0,1
               };
    LL add(LL a, LL b) { return (a + b + mod) % mod; }
    LL mul(LL a, LL b) { return a * b % mod; }
    Matrix mulm(const Matrix& a, const Matrix& b) {
        Matrix temp;
        temp.init(0);
        for (int i = 0; i < N; ++i) {
            for (int j = 0; j < N; ++j) {
                for (int k = 0; k < N; ++k) temp.mat[i][j] = add(temp.mat[i][j], mul(a.mat[i][k], b.mat[k][j]));
            }
        }
        return temp;
    }
    Matrix poww(LL n) {
        Matrix a = p, ret;
        ret.init(1);
        while (n) {
            if (n & 1) ret = mulm(ret, a);
            a = mulm(a, a);
            n >>= 1;
        }
        return ret;
    }
    void work() {
        LL n, a, b;
        scanf("%lld%lld%lld", &n, &a, &b);
        Matrix m = poww(n-2);
        LL ans = add(add(add(add(add(add(mul(b, m.mat[0][0]), mul(a, m.mat[0][1])), mul(16, m.mat[0][2])),
                      mul(8, m.mat[0][3])), mul(4, m.mat[0][4])), mul(2, m.mat[0][5])), m.mat[0][6]);
        printf("%lld
    ", ans);
    }
    int main() {
        int T;
        scanf("%d", &T);
        while (T--) work();
        return 0;
    }
    
    
    
    
  • 相关阅读:
    js 实现树效果
    (转)JavaScript 冒泡实例与阻止冒泡方法
    (转)js全页面刷新方法
    js 右键菜单
    (转)js,jQuery屏蔽鼠标右与jquery 鼠标右键事件、左键单击事件判定
    Flex取xml文件中的值
    oracle相关时间计算,得到季度第一天、最后一天
    (转)ASP.NET MVC VS2010中更改默认调试浏览器
    JS 与 后台如何获取 Cookies
    js 弹出新页面
  • 原文地址:https://www.cnblogs.com/kkkkahlua/p/7703926.html
Copyright © 2020-2023  润新知